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Abstract 

The primary objective of the study was to determine the best parametric model that can be 
used for fitting yield curves for a bank between Nelson-Siegel model and 
Nelson-Siegel-Svensson.Nelson-Siegel and Nelson-Siegel-Svensson models using 
Ordinary Least Squares after fixing the shape parameters to make the models linear 
models. A t-test conducted is conducted on the adjusted R2 of the two models and results 
showed that Nelson-Siegel-Svensson model fits better the yield curves of the Bank 
compared to Nelson-Siegel model. An analysis of the out-of-sample forecasting abilities 
of the two models using AR(1) conducted using E-views shows that the two parametric 
models have excellent out-of-sample forecasting abilities on all of their parameters. The 
time independent of Nelson-Siegel-Svensson model was found to be negative in most of 
the time and could not be interpreted as a long run yield of the Bank. It is also highlighted 
that the models produces very low levels of R2 in many cases because of the high 
volatility that is found in the market interest rates of certificates of deposits. The estimated 
yield curve may be used as a reference curve for funds transfer pricing systems. 
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 The term structure of interest rates if the relationship between yield to maturity of default 
free zero coupon securities and their maturities (Sundaresan 1997 p. 176) and it is usually 
represented by means of a yield curve indicating different rates for different 
maturities.The yield curve can take many different shapes and thus can be upward sloping 
downward sloping, flat or hump-shaped as explained by four main theories which happen 
to be not part of this study. Interest rate term structures have important applications in 
economics and finance especially for banks and governments.  An understanding of the 
term structure is very important for appraising the interest rate risk of banks because all 
funding or investing decisions resulting from liquidity gaps have an impact on interest 
rate risk. Funding or investing decisions require a choice of maturity and a choice of 
interest rate which can only be made with the interest rate structure as the basic input.

 This study tries to contribute to the Asset and Liability Management (ALM) of banks in 
Zimbabwe by providing a solution to the estimation of bank specific term structures that 
are used in setting up of Fund Transfer Pricing systems. According to BIS (2005), all term 
structure estimation models can be broadly classified into parametric and

 
spline based 

approaches. Nelson-Siegel and its extension the Nelson-Siegel-Svensson model are 
parametric model and are also known as function based models because they are specified 
as single-based functions that are defined over the entire maturity domain. 

 Zimbabwe’s interbank market which is a key component of the money market and the 
starting point of the monetary transmission mechanism has suffered from the persistent 
liquidity challenges. The absence of money market instruments in form of government 
paper has been contributing to the poor functioning of the interbank market, because 
market players cannot trade without suitable and acceptable collateral instruments to 
cover counterparty risks. According RBZ (2013) the cost of capital has remained high as 
evidenced by high lending rates as well as high bank charges. The high lending rates have 
discouraged borrowing in the economy, while initiatives to meaningfully mobilize 
savings have been militated by high bank charges, thus undermining the intermediary role 
played by banks.

 The estimations and calibrations in this study were focused only on two parametric 
models namely the Nelson-Siegel and Nelson-Siegel-Svensson. The study explored the 
estimation approaches that produce the best parameters and explored techniques for 
in-sample and out-of-sample forecasting that maintains goodness of fit and smoothness. 

 

 
 
2  Literature on Estimation of Term Structures  
The Nelson Siegel Model can express the yield curve at any point of time as a linear 
combination of the level, slope and curvature factors, the dynamics of which drive the 
dynamics of the entire yield curve as mentioned by Diebold et al (2004).  
The most important factor in determining the movement of term structures is the level 
factor according to Litterman and Scheinkman (1994). The second factor tends to have an 
effect on short-term rates that is opposite to its effect on long term rates. The third factor 
is the curvature factor, because it causes the short and long ends to increase, while 
decreasing medium-term rates.  
Diebold et al (2004) cited that the dynamics of the three factors drive the dynamics of the 
entire term structure. Nelson and Siegel in their initial model formulated the parameter 

1   Introduction
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λsuch that it can change with time, but Diebold and Li (2003) argued that fixing the 
parameter for the entire time resulted in a very little loss of fit and therefore concluded 
that λt should be fixed at 0.0609 so that the estimation procedure is simplified economic 
intuition is sharpened.  
Nelson and Siegel (1987) parameterised the Nelson Siegel model and computed the best 
fitting values of the coefficients using linear least squares. The procedure was repeated 
over a grid of values for λ (time constant) to produce the overall best fitting values. 
Annaert et al (2012) referred to this procedure as a grid search.  Nelson and Siegel (1987) 
found the best fitting values of λ within the range of 50-100 and discovered that small 
values of λ are able to fit the curvature at low maturities because they correspond to rapid 
decay in the regressors. Correspondingly large values of λ were found to produce slow 
decay in the regressors and fitted curvature over long maturity ranges though unable to 
follow extreme curvature at short maturities.  
Nelson and Siegel (1987) obtained the best fit for US T-bills to be given by λ =40. Nelson 
and Siegel (1987) highlighted that the set values of parameters are not expected to fit the 
data perfectly because a highly parameterised model that could follow all the wiggles in 
the data is less likely to predict well than a parsimonious model that assumes more 
smoothness in the underlying relation than one observed in data. The Nelson Siegel model 
was able to account for a very large fraction of the yields with a median R2 of 0.9159 and 
Nelson and Siegel (1987) empirically found that little is gained in practice by fitting λ to 
each data set individually. 
Aljinovic et al (2012) compared the performance of Nelson-Siegel and 
Nelson-Siegel-Svensson models using yield data from the Croatian market. The main 
objective of Aljinovic et al (2012) was to find the best fit model for yield curve estimation 
in Croatia. Yield data that was used was collected on weekly basis and Aljinovic et al 
(2012) used Excel in estimating the parameters of the two models using OLS with quasi 
Newton. It cases where it was difficult to estimate the parameters, Aljinovic et al (2012) 
resorted to using the Simplex method in statistic that is found in StatSoft. Nelson-Siegel 
model and Nelson-Siegel-Svensson model were compared using R2 that gives information 
about goodness of fit of a model. Aljinovic et al (2012) compared the determination 
coefficient for the two models and performed t-tests at a 1% level of significance and 
found out that Nelson-Siegel-Svensson model produced a better fit for Croatian term 
structure. 
Annaert et al. (2012) compared the different estimation methods and evaluated the 
estimation procedures based on the mean absolute error of their forecasting performance 
(Mean Absolute Prediction Error/ MAPE) and considered the estimation procedure that 
produce the lowest MAPE to be the best method. Ridge regression produced the 
minimum MAPE out of the estimation methods that where evaluated. Rezende and 
Ferreira (2011) compared the modeling and forecasting ability of a class of Nelson-Siegel 
models that included the three factor Nelson Siegel (1987) model, Bliss’s three factor 
Model (1997), Nelson-Siegel-Svensson Model (1994) and their Five Factor Model based 
on a Quantile Autoregression (QAR)forecasting approach and daily implicit yield data 
from the interbank market. Rezende and Ferreira (2011) used the same approach as used 
by Annaert et al (2012) of minimising the average of the root mean squared error in 
comparing the model fitness and found that Nelson-Siegel-Svensson QAR forecasts 
produce a smaller Root Mean Squared Error when compared with Nelson Siegel QAR 
forecasts. 
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Diebold and Li (2006) found out that Nelson Siegel Model produces term structure 
forecasts that appear much more accurate at long horizons than various standard 
benchmark forecasts. Nelson Siegel model is however inconsistent with the no-arbitrage 
property meaning that the consistency between the dynamic evolution of interest rates and 
the actual shape of the yield curve is not ensured at certain moments as argued by Bjork 
and Christensen (1999). 
Elen (2010) empirically tested whether the Nelson Siegel parameters legitimately reflect 
the level, slope and curvature elements of a term structure by first constructing a level, 
slope and curvature from observed yield data and then comparing them with the estimated 
parameters of the model. 25 year yield was taken to be the level of the yield curve and the 
slope was defined as the difference between the 25 year and 3 month yields (straight line). 
The curvature was computed as 2 times 2 year yield minus the sum of the 3-month and 25 
yields. Elen (2010) then created a time series of the three factors of Nelson Siegel found 
by ordinary least squares and found out that the estimated factors and the defined factors 
followed the same pattern thus concluding that based on Canadian yields, the three factors 
of Nelson Siegel were indeed level, curvature and slope. 
The method of Svensson (1994) is more flexible and has a better fitting than the original 
method of Nelson& Siegel (1987) as noted by Laurini and Moura (2010). Gilli et al (2010) 
estimated the parameters of Nelson-Siegel-Svensson using the approach introduced by 
Diebold and Li (2003) of fixing λ1 and λ2 and then estimate the rest of the parameters 
using a least squares algorithm. Gilli et al (2010) pointed out that the need to have 
constraints when solving optimization problem of obtaining parameters to guarantee the 
getting reasonable values. Just like Nelson and Siegel (1987), Diebold and Li (2003) and 
others, Gilli et al (2003) used the least squares approach to obtain the parameters for 
Nelson-Siegel-Svensson model with constraints: 0<β1<15;-15<β2<30; -30<β3<30; 
-30<β4<30; 0<λ1<30 and 0<λ2<30. Gilli et al repeated the estimation procedure using 
other algorithms like MATLAB’s fmin search that uses Nelder-Mead in obtaining 
parameters and observed that the yield fit was better than the parameter fit and most errors 
where of 10 basis points and concluded that Nelson-Siegel-Svensson works well in 
interpolating observed yields. 
To avoid potential challenges in numerical optimization, Molenaars et al (2013) followed 
Diebold and Li (2003)’s approach by fixing λt=λ=0.0609 and estimated the remaining 
parameters using ordinary least squares regression. The out of sample performance of 
forecasting procedures was evaluated using RMSE. The smaller the RMSE is, the better 
the forecasting ability of the model considered is. MATLAB was used in this study and 
Molenaars et al (2013) concluded that Nelson-Siegel model does not properly fit the yield 
curve at all dates because it imposes a functional form to the yield curve that can result in 
inferior yield estimates if the yield curve does not fit to the functional form. 
Bliss (1996) demonstrated the dangers of using in-sample goodness of fit as the sole 
criterion for comparing term structure estimation method. Bliss used parametric and 
non-parametric tests in comparing five term structure estimation methods and concluded 
that the Unsmoothed Fama-Bliss is overally the best, but also recommended that users 
interested in fitting term structures parsimoniously need to consider either the Smoothed 
Fama-Bliss or the Extended Nelson Siegel methods. In-sample results give a distorted 
view of the performance of the term structure, because there is a danger of over-fitting the 
data and this can be eliminated by using out-of-sample tests evaluating estimation 
methods. Nelson and Siegel (1987) also argued that the criteria for a satisfactory yield 
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curve model is that it be able to predict yields beyond the maturity range of the sample 
used to fit it because a function may be flexible to fit data over a specific interval, but may 
have very poor properties when extrapolated outside that interval. 

 
 
3  Methodology 
The researcher employed a quantitative research design in an attempt to answer the 
research questions of the study. The primary research question of this study was to find 
the most suitable method of fitting term structures for the Bank and suitability implies 
performing some statistical tests to compare the Nelson-Siegel model and the 
Nelson-Siegel-Svensson model.  

 
3.1 Research Data 
The researcher used daily yield data on certificates of deposits for the period starting 
March 2012 to March 2013. Yield data was annualized first before it was used in 
estimating the parameters of the term structure fitting models to ensure that yield data was 
based on the same temporal platform. The formula for calculating weighted annual 
effective rates is given below: 
 
Weighted AER�Mj� = ∑ Cost i AER i

n
i=1
∑ Cost i

n
i=1

  for ∑ Costi
n
i=1 > 0                         (1) 

 
Where:  j = maturity for certificate of deposits for  ∀j > 0 
   n = the number of deposits with the same maturity, 
Costiis the size of deposit i with maturity Mj , 

AERiis the Annual Effective Rate for deposit i with maturity Mj  and it is calculated as:  
 

AER = �1 + ri
j

360
�

360
j − 1                                                 (2) 

 
The weighted annual effective rates were regarded as the observed yields for the Bank 
and they were then used in the estimation of parameters for Nelson-Siegel model and 
Nelson-Siegel-Svensson models. Results from the two models were compared to 
determine the best fit model. 

 
3.2 Term Structure Relationships 
Term structure estimation methods are designed for the purpose of approximating one of 
the three equivalent representations of the term structure: spot rate curve, discount rate 
curve and the forward rate curve (Pooter, 2007). Assuming that all rates are continuously 
compounded, a forward rate ft(τ, τ∗) is the interest rate of a forward contract on an 
investment which is initiated  periods in the future and matures τ∗ periods after the 
date of initiation. The instantaneous forward rate ft(τ) is obtained by letting the maturity 
of such a forward contract go to zero; 
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limτ∗ ↓0 ft(τ, τ∗) = ft(τ)                                                   (3) 
 
The spot rate (yield) with  periods to maturity denoted by yt(τ) can be obtained from 
the instantaneous forward rate. When the instantaneous forward rates are continuously 
compounded up to time to maturity (τ)and equally weighted, yt(τ) is obtained: 
 
yt(τ) = 1

τ ∫ ft(m)dmτ
0                                                      (4) 

 
The discount function Pt(τ) denoting the present value of zero coupon bonds paying out 
a nominal amount of $ after  periods can be obtained from the spot rateyt(τ): 
 
Pt(τ) = exp[−τyt(τ)]                                                     (5) 
 
equivalently: 
 
yt(τ) = − 1

τ
logPt(τ)                                                      (6) 

 
Linking forward rates directly to spot rates: 

yt(τ) =
1
τ
� ft(m)dm
τ

0

 

d
dτ

yt(τ) =
1
τ
�ft(m)|0

τ  

τ
d

dτ
yt(τ) = ft(τ) − ft(0) 

ft(0) = yt(τ) = spot rate 
ft(τ) = d

dτ
yt(τ) + yt(τ)                                                  (7) 

 
3.3 Nelson Siegel Model 
Nelson and Siegel (1987) introduced a simple parsimonious model for approximating the 
forward rate curve with mathematical approximating functions in the form of Laguerre 
functions. Nelson and Siegel (1987) assumed that the instantaneous forward rate at 
maturity (τ)  denoted ft(τ)  is given by the solution to a second order differential 
equation with real equal roots for spot rates: 
 
ft(τ) = β0,t + β1,t �

−τ
λ t
� + β2,t �

τ
λ t
� exp �−τ

λ t
�                                   (8) 

 
Averaging the forward rates  
 

yt(τ) =
1
τ
�� �β0,t + β1,texp �

−m
λt
� + β2,t �

m
λt
� exp �

−m
λt
�� dm

τ

0

� 
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yt(τ) = β0,t + β1,t �
1−exp�− τ

λ t
�

τ
λ t

� + β2,t �
1−exp�− τ

λ t
�

τ
λ t

− exp �− τ
λ t
��                 (9) 

 
The Nelson-Siegel Model that is widely used is the one for estimating spot rates given by 
equation (3.7) above. The model has four parameters that had to be estimated in order to 
estimate a yield for a given maturity(τ) which areβ0,t ,β1,t ,β2,t  and λt . The factors that 
make up the Nelson Siegel model are best interpreted by interpreting the factor loadings 
in the model because they exhibit different properties over a range of maturities. The first 
component in the Nelson-Siegel model is β0,tand its factor loading is 1 which is a 
constant that is independent of maturity, thus it is often interpreted as the level factor 
representing the long run yield. 
The second component β1,t  is interpreted as the slope and is weighted by a function of 

time to maturity (τ). The factor loading of β1,t  is �
1−exp�− τ

λ t
�

τ
λ t

� and when τ = 0 it is unit 

and it exponentially decays to zero when τ →∞ primarily affecting β1,t  in the short run. 
The component can either have a downward (β1 > 0) or upward (β1 < 0) slope.  The 
third component in the model β2,t  is interpreted as the curvature and its factor loading 

is�
1−exp�− τ

λ t
�

τ
λ t

− exp �− τ
λ t
��.  

The function represent the medium term component in a yield curve because it starts at 
zero gradually increasing and decreases back to zero as τ →∞ thereby adding a hump to 
the curve and is termed the medium term. The component can generate a hump ifβ2,t >
0 or a trough if β2,t < 0. The higher the absolute value of β2,t , the more pronounced the 
trough or hump is. 
The limiting behavior of the Nelson-Siegel model: 
 
limτ→0 yt(τ) = β0,t + β1,t                                                 (10) 
limτ→ yt(τ) = β0,t + β1,t                                                  (11) 

 
3.4 Nelson Siegel Svensson Model 
Nelson-Siegel (1987) model  has  gone  through  several improvements  to  
enhance  flexibility  and to  capture  a  wider  variety  of  curve  shapes with 
the modifications mainly carried out by adding factors and decaying parameters. 
Svensson (1994) extended the Nelson Siegel model by incorporating for a second 
hump/trough in the model. Svensson (1994) added another exponential term more similar 
to the third term in Nelson-Siegel Model, but with a different decaying parameterλ2t .  
The additional factor loading on the Nelson-Siegel-Svensson model is of β3t   and is 
given by the same Laguerre function as the one in Nelson-Siegel model that determines 
the curvature of the yield curve, but with a different decay parameter λ2t . The additional 

factor loading is �
1−exp(−τ λ2t� )

τ
λ2t�

− exp(−τ λ2t
� )� . The limiting behavior of the 

Nelson-Siegel-Svensson model is the same as the limiting behavior of Nelson-Siegel 
model provided in (8) and (9). 
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yt(τ) =

β0t + β1t �
1−exp(−τ λ1t� )

τ
λ1t�

� + β2t �
1−exp (−τ λ1t� )

τ
λ1t�

− exp(−τ λ1t
� )� + β3t �

1−exp(−τ λ2t� )
τ
λ2t�

−

exp(−τ λ2t
� )� +  εt

τ                                                                   (12) 

 
The NSS model therefore incorporates two decaying parameter which are λ1 and λ2 
which means it has 6 parameters that will have to be estimatedβ0,t ,β1,t , β2,t , β3,t , λ1,t  
and λ2,t  compared to the 4 parameters in NS model. Bolder and Streliski (1999) 
discussed the multi-colinearity problem that came within the model if λ1,t = λ2,t . The 
multicolinearity problem is reduced by ensuring that λ1,t ≠ λ2,t .  

 
3.5 Parameter Estimation 
Ordinary Least Squares 
The researcher fixed the λ1t  parameter as recommended by Diebold and Li (2004) and 
Elen(2010) to simplify the estimation procedure by reducing the model to a linear 
regression. The estimation of parameters was done by considering the following 
 
Yt(τ) = Xt ∗ βt + εt                                                      (13) 
 
functional form for a regression: 
 
whereYt(τ) denotes the vector of interest rates (annual effective rates) at time t for n 
different times of maturity collected in vector τ, 
εtis a vector of error terms at time t for n different estimates of interest rates, 
Xtis a vector of the factor loadings of the Nelson Siegel Model which can be estimated 
given maturity (τ) and . The vector of the factor loadings can be interpreted as the 
vector for independent variables that explain the dependent variable yield. Using equation 
(3.9) for Nelson-Siegel model the following vector is obtained: 
 

Xt =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1       1−e−κ tτ1

κtτ1

1−e−κ tτ1

κtτ1
− e−κtτ2

1       1−e−κ tτ2

κtτ2

1−e−κ tτ2

κtτ2
− e−κtτ2

.

.

.
1      

.

.

.
1−e−κ tτn

κtτn

.

.

.
1−e−κ tτn

κtτn
− e−κtτn ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                   (14) 

 
where 1

λ t
 is replaced by κt  for simplistic in writing the vector Xt  and vector βt =

β0,t ,  β1,t ,  β2,t  
Equation 3.14 was extended with the inclusion of another column of the fourth loadings 
of Nelson-Siegel-Svensson model.  Estimations were done for 252 different dates and 
the researcher built a model that used macro for ordinary least squares (algorithm for 
ordinary least squares) in Excel using Visual Basics in Excel. The VBA code to perform 
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the ordinary least squares regression and the analysis of variance was written using 
ordinary least squares formulas provided by Davidson and MacKinnon (1993) and the 
steps found in Rouah andVainberg (2007). The estimate of parameters using ordinary 
least squares is given by: 
 
β�OLS = �XTX�−1XTY                                                     (15) 
  
Where: 
β�OLS = a vector of dimension k containing estimated parameters 
X = (ιX1X2 . . . Xk−1)= a design matrix of dimension n x k containing independent 
variable and the vector  
 = a vector of dimension n containing ones 

The fitted values can then be obtained using the estimated vector of parameters β�OLS  
 
Y� = Xβ�OLS                                                             (16) 
 
For the analysis, the total sum of squares (SSTO) is defined as the variability of the 
dependent variable about it mean. SSTO can be expressed in terms of the error sum of 
squares (SSE) and the regression sum of squares (SSR) 
 
SSTO = SSE + SSR                                                     (17) 
 
Where: 

SSTO = �(yi − y�)2
n

i=1

 

SSE = �(yi − y�i)2
n

i=1

= �Y − Y��T�Y − Y�� 

 

SSR = �(y�i − y�)2
n

i=1

 

 
yi  =elements of Y 
y�i  = elements of  Y�(i = 1,2, . . . , n) 
y� = 1

n
∑ yi

n
i=0 is the sample mean of the dependent variable 

 
The mean square error (MSE) which is an estimate of the variance σ2 is given as 
 
σ�2 = MSE = SSE

n−k
                                                       (18) 

and the estimate of the standard deviation is given by σ� = √MSE. The coefficient of 
determination R2 that measures the proportion of variability in the dependent variable that 
can be attributed to a linear model is given by the proportion of SSTO 
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R2 = SSR
SST 0

                                                              (19) 
 
In order to incorporate for the increase in R2 as a result of an increase in variables, 
adjusted R2 is calculated and is given by 
 
Ra

2 = 1 − �n−1
n−k

� (1 − R2)                                                  (20) 
 
The covariance matrix of the parameters is given by  
 
Cov�β�OLS � = MSE�XTX�−1

                                               (21) 
 
The t-statistic for each regression coefficient is given 
 

t = β�j

SE�β�j�
                                                              (22) 

 
where: β� j= j-th element of β� 
SE�β� j� = standard error of β� j obtained as the square root of the j-th diagonal element of 
(3.21). Once a t-statistic is obtained for a parameter, the two-tailedp-value can then be 
obtained from a Student t-distribution with (n-k) degrees of freedom to determine the 
statistical significance of the regression coefficient. 

 
3.6 Model Comparison 
The researcher compared the two models to determine which model best fits Zimbabwean 
data based on the yield data of certificates of deposits. The models were compared using 
the Coefficient of Determination (R2) and the Root Mean Square Error (RMSE). 
The formula for R2 is given by: 
 
R2 = SS R

SS T
                                                              (23) 

 
whereSSR  is the regression sum of squares calculated as ∑ (y�i − y�)2n

i=1  and SST  is the 
total sum of squares calculated as ∑ (yi − y�)2n

i=1 . The t-test was conducted in Excel. 
The formula for RMSE is given as: 
 

RMSE = �∑ (yi−y�i )2n
i=1

n
                                                                 (24) 

 
3.7 Out-of-sample Forecasting 
The researcher followed the works of Diebold and Li (2006) and De Pooter (2007) by 
specifying a first-order autoregressive process for forecasting the out-of-sample 
parameters for the Nelson-Siegel model and Nelson-Siegel-Svensson model. An 
autoregressive (AR) of order p is a process where the realisation βt  is a weighted sum of 
past realisations i.e.βt−1,βt−2,...,βt−p .The first-order autoregressive process (AR(1)) is 
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expressed as: 
 
βt = μ + ϕβt−1 + νt                                                     (25) 
 
where  is the intercept and  is the coefficient of the lagged value of βt   and νt  is 
the random error. The parameters of the AR (1) process were obtained using non-linear 
regression in E-views. The model was be used in forecastingβ0,t ,β1,t , β2,t  parameters for 
Nelson-Siegel model andβ0,t ,β1,t , β2,t , β3,t  for Nelson-Siegel-Svensson model.  
The researcher used the both the Dynamic and Static methods available in E-views in 
forecasting in order to determine the best approach.  

 
 
4  Main Results  
4.1 Grid Search for λ for Nelson-Siegel Model 
A Grid search for λ was done using data for 25 March 2013 to find a value of λ that could 
be fixed for all the dates while producing a good fit. Increasing λ resulted in fitting a yield 
curve that increased yield in the short maturity and minimised the yield in the longer 
maturity showing signs on high decay parameter that results in a strong negative slope in 
the long run. Decreasing the shape parameter resulted in lower short term yields that were 
compensated by higher yields in the longer maturity. The evolution of the fitted yield 
curve to changes in the shape parameter is shown below: 
 

 
 

 
Figure 1: Fitted NS yield curves with different λs 
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The value of λ that was chosen is the one that fits the both the short maturities and long 
maturities better. λ =0.25 fitted the yield curve better and was considered as the shape 
parameter that was fixed for the whole year’s daily estimates.  

 
4.2 Analysis of Time Series Results of Nelson-Siegel Model (λ = 0.25) 
The researcher estimated and fitted the yield curve for 257 different days between March 
2012 and March 2013. Analysis of variance was done on each day’s estimations with 
t-statistics, p-values and betas (s.e.) 3 for the three parameters were calculated and 
analysed. R2 Adjusted R2, √MSE and ε2 was also calculated for the 257 days and a time 
series of these statistics was generated. The time series of the parameters and statistics is 
presented below by making use of graphs: 
 

 

 

                                                 

3Standard error of estimated parameters 

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

0.03

0.05

Mar-12 Jun-12 Sep-12 Dec-12 Apr-13
Time

Time series of B1

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

Mar-12 Jun-12 Sep-12 Dec-12 Apr-13

Time

Time series of B2

-0.2

0

0.2

0.4

0.6

0.8

Mar-12 Jun-12 Sep-12 Dec-12 Apr-13
Time

Time series of R2 & Adj R2

0
0.005

0.01
0.015

0.02
0.025

Mar-12 Sep-12 Apr-13

Time

Time series of √MSE 

(vi) 

(iv) 

(iii) 

(i) 

(ii) 



Estimation of Term Structures using Nelson-Siegel and Nelson-Siegel-Svensson     167 

 

Figure 2: Time series of Nelson-Siegel Parameters 
 

Table 1: Measures of central tendency for parameters and statistics of Nelson-Siegel 
model 

  β0 β1 β2 R2 Adj R2 √MSE ε2 
Min 0.067008 -0.068990 -0.063170 0.018918 -0.006565 0.009233 0.006530 
Max 0.120198 0.007775 0.217751 0.737676 0.728631 0.021569 0.033962 
Mean 0.087544 -0.027450 0.072067 0.244388 0.224150 0.015346 0.017770 
 0.012451 0.024142 0.048620 0.152127 0.155248 0.002456 0.005000 
 
The parameters of Nelson-Siegel exhibited an erratic behavior over the year that is mainly 
attributed to the erratic behavior in the economic environment in Zimbabwe. β0started at 
0.0684 and increased steadily to reach a peak of 0.1202 in July 2012 before it started 
dropping and ended at 0.0752 in March 2013. β0 is interpreted as the long run yield in 
literature (Diebold and Li, 2006) because the parameter remained positive over the year of 
study as expected in a market where there are no negative interest rates on long term loans 
data. β1 was a little more volatile than β2 and had a standard deviation of 2.41%. β1 started 
at -0.0401 in March 2012 and increased gradually increased to reach a positive value of 
0.00778 and started dropping to end at -0.00987 a higher value than the starting value. Β2 
was the most volatile parameter of the Nelson-Siegel model with a standard deviation of 
4.86%.  
From the results and graphs presented above it was found the R2of the Nelson-Siegel 
model ranged from 1.9 % to 72.9% during the year depending on the structure of the 
market data that was used in making the estimates. The best fit was obtained on 3 March 
2012 and the worst performance of the Nelson-Siegel model was observed on 1 October 
2012. The overall average R2 of the model is 24.4%. As earlier on argues at the beginning 
of the chapter, this small value of R2 does not mean that Nelson-Siegel Model was unable 
to fit well a smooth curve that can be used for fund transfer pricing. The small value of R2 
is largely attributed to the noise in the market data based on certificate of deposits.  
A correlation analysis of the parameters of Nelson-Siegel and R2 showed that β2 has a 
strong positive correlation with R2 which implies that whenever the model has trouble in 
obtaining a good fit, it is reflected by a drop in the value β2 that determines the weight of 
the curvature component of the mode. Thus any trouble in determining the curvature of 
the yield curve implies that the data is too volatile and the model will only manage to 
account for less of the proportion of variability. Correlation results are shown in 
Appendix 1. The diagram below shows the movements between β2 and R2 
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Figure 3: Correlation between 2 and R2 

 

4.3 Nelson-Siegel-Svensson Model 
Grid Search for λ1 and λ2 for Nelson-Siegel-Svensson Model 
The Nelson-Siegel-Svensson required two shape parameters λ1 and λ2 so that the model 
can be estimated using OLS. The researcher conducted a grid search by varying λ1 and λ2 
in the range (0, 5] and (0,5] respectively. The grid search was done on data for 31 August 
2013 that posted one of the smallest R2 using Nelson-Siegel model. 2500 estimates were 
done in the grid (0, 5] with variations of 0.1 on the estimations of shape parameters and 
the best fits that had a high R2 were plotted to determine the evolution of the fitted yield 
curves as λ1 and λ2 changes. The diagram below shows some of the yield curves that were 
estimated in the grid search: 
 

 
Figure 4: Different estimates of yield curve using varying shape parameters 

 
The estimates were then further reduced making use of R2 and observation and eliminated 
all the yield curves that did not produce a better fit and obtained the following 11 curves. 
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Figure 5: Reduced estimates of yield curve using varying shape parameters 

 
The 11 curves were then analysed to obtain the curve that produced a better fit at the end 
of the curve because one that produces a lower cost at longer maturities can be misleading 
and very costly for the bank. The researcher realized that increasing the value of λ1 
resulted in a trough at the shortest maturity but this was compensated by significant loss 
of fit at the longer maturity as shown in Diagram 8. Based on the analysis of the results 
from the grid search, the researcher finally obtained the best yield curve that was 
estimated using λ1= 0.714 and λ2=10. The yield curve is shown in the diagram below: 
 

 
Figure 6: Best yield curve from the grid search 

 
Analysis of time series results of Nelson-Siegel-Siegel Model (λ1=0.714 and λ2=10) 
The researcher estimated and fitted the yield curves for the 257 different days between 
March 2012 and March 2013. Analysis of variance was done on each day’s estimations 
with t-statistics, p-values and betas (s.e.) for the four parameters were calculated and 
analysed just like what was done for Nelson-Siegel Model. R2, Adjusted R2, √MSE and ε2 
was also calculated for the 257 days and a time series of these statistics was generated. 
The time series of the parameters and statistics of Nelson-Siegel-Svensson model is 
presented below by making use of graphs: 
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Figure 7: Time series of Nelson-Siegel-Svensson Parameters and Statistics 
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Table 2: Measures of central tendency for parameter and statistics of 
Nelson-Siegel-Svensson model 

  β0 β1 β2 β3 R2 Adj R2 √MSE ε2 

Min -1.21683 -0.85409 -0.56155 -4.36781 0.03868 0.00073 0.00915 0.00670 
Max 0.92950 1.25956 1.29225 5.90104 0.72439 0.70989 0.02135 0.03282 
Mean -0.17147 0.23748 0.33615 1.00433 0.26425 0.23435 0.01520 0.01719 
 0.40473 0.40485 0.33236 1.96836 0.15327 0.15785 0.00225 0.00456 
 
β0 started at -1.2168 in March 2012 and increased steadily to reach a peak of 0.9295 in 
July 2012 before it started dropping and ended at -0.53452 in March 2013. This trend was 
also identified with β0 of Nelson-Siegel model but the difference is that parameters of in 
Nelson-Siegel the parameter was never positive and was easily interpreted as representing 
the long run yield in the Zimbabwean market. β0 is thus not interpreted as the long run 
yield for the market understudy as it is interpreted in literature (Diebold and Li, 2006) 
because of its negative values. The parameter β0 also showed a very large standard 
deviation of 40.47% which is much higher that of Nelson-Siegel of 1.25%. β1 of 
Nelson-Siegel-Svensson was unstable compared to that of Nelson-Siegel Model with a 
standard deviation of40.48%. β1 moved in a perfect opposite direction with β0 as shown 
by a high negative correlation of 99.9%. 
β2 was the less volatile compared to the rest of Nelson-Siegel-Svensson parameters and 
moved in the same direction with β3 and β1 with correlations of 97.42% and 97.6% 
respectively. The fourth parameter of Nelson-Siegel-Svensson model that is responsible 
for fitting a second hump to a yield curve had a high negative correlation with of 
99.9%. The p-values of the model parameters were below 0.05 in most of the estimates 
showing that they were statistically significant at a 95% significance level. 
From the results and graphs presented above it was found the R2 of the Nelson-Siegel 
model ranged from 3.8% to 72.4% during the year depending on the structure of the 
market data that was used in obtaining the estimates. The best fit was obtained on 3 
March 2012 and the worst performance of the Nelson-Siegel-Svensson model was 
observed on 1 October 2012 and these dates correspond to the best and worst performance 
of Nelson-Siegel model. This shows that the performance of the two models depended on 
the structure of the market data. The overall average R2 of the Nelson-Siegel-Svensson 
model is 26.4  

 
4.4 Model Comparisons 
Coefficient of Determination 
A t-test was conducted on the adjusted coefficients of determination (adj R2) of 
Nelson-Siegel and Nelson-Siegel-Svensson so that results that incorporated a penalty of 
additional variables are used in comparing the model.Results of a t-test at 5% significance 
level are shown in the Table 3 below. 
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Table 3: t-test for the means of adj R2 of Nelson-Siegel and Nelson-Siegel-Svensson 
models 

t-Test: Two-Sample Assuming Unequal Variances 
  

     NS Model NSS Model 
Mean 0.224149822 0.234357317 
Variance 0.024102045 0.024919111 
Observations 257 257 
Hypothesized Mean Difference 0 

 df 512 
 t Stat -0.739084265 
 P(T<=t) one-tail 0.230097259 
 t Critical one-tail -1.647835164 
 P(T<=t) two-tail 0.460194518 
 t Critical two-tail 1.964608113   

 

 
Figure 8: Hypothesis t-test graph 

 
A test statistic of -0.7391 was obtained against a 5% critical t-value of -1.6478. The test 
results failed to reject the notion that the proportion of variability of 
Nelson-Siegel-Svensson model was smaller than that of Nelson-Siegel model i.e. adj R2 
of Nelson-Siegel-Svensson model is statistically higher than that of Nelson-Siegel. The 
results therefore concludes that Nelson-Siegel-Svensson model is the better model of 
fitting a term structure for the Bank if the models are compared based on their proportion 
of variability. See Figure 15 below for graphical comparison of adj R2. 
 
Root Mean Squared Error 
Daily comparisons of the RMSE from the two models were conducted to determine the 
model that fitted the term structure with precision on each day of the year. Summarized 
results are in the table below. 

95% 

Hypothesis test graph 
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Table 4: RMSE comparisons 
Model Frequency 

Nelson-Siegel 118 

Nelson-Siegel-Svensson 139 

Total 257 

 
The assessment of the estimate of the standard deviation (RMSE) showed that 
Nelson-Siegel fitted the yield curve with more precision than its extension, 
Nelson-Siegel-Svensson model on 118 occasions out of the 257 days estimated. 
Nelson-Siegel-Svensson proved superior on 139 occasions which corresponds to 54% of 
the time.  
 

 
Figure 15: Comparisons of Adj R2 and RMSE 

 
4.5 In-sample and Out-of-sample forecasting 
The researcher obtained the following summarized results for the AR(1) models for the 
different parameters of Nelson-Siegel model and Nelson-Siegel-Svensson model. Results 
were estimated using data observations obtained from daily estimations of the models for 
the period 01 Mar 2012 – 31 Oct 2012. The rest of the observations from 01 Nov 2012 – 
26 Mar 2013 were excluded from parameter estimation and were treated as hold out 
sample.  Results are presented in the format of the specification of an AR (1) model 
presented in equation (3.25): 
 
βt = μ + ϕβt−1 + νt  
 
Results for Nelson-Siegel model parameters: 
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Results for Nelson-Siegel-Svensson parameters: 
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Detailed results for the estimation of parameters are found in Appendix 2 and 3. The 
in-sample and out-of-sample forecasts are plotted in the diagrams below: 
 

 
Figure 9: In-sample and out-of sample forecasts for β0 (NS) 
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Figure 10: In-sample and out-of sample forecasts for β1 (NS) 
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Figure 11: In-sample and out-of sample forecasts for β2 (NS) 
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Figure 12: In-sample and out-of sample forecasts for β0 (NSS) 
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Figure 13: In-sample and out-of sample forecasts for β1 (NSS) 
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Figure 14: In-sample and out-of sample forecasts for β2 (NSS) 
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Figure 15: In-sample and out-of sample forecasts for β3 (NSS) 

 
A graphical analysis of the in-sample(green trends) and out-of-sample (blue trends) 
forecasts shows that both Nelson-Siegel model and Nelson-Siegel-Svensson models have 
great out-of-sample forecasting capabilities as shown by the blue trends that are almost in 
line with the green trends. A statistical analysis of the results of each parameter that was 
forecasted using the Static method in E-views confirms that the models have very good 
out-of-sample forecasting abilities using AR(1). The variation proportion of the 
out-of-sample forecasts for all parameters (NS and NSS) measures the difference between 
variation in forecasts and variation of actual data and in all cases this value is very small 
confirming that the variation of out-of-sample forecasts is almost equal to the variation of 
actual data.  The bias component that measures the extent to which the mean of the 
out-of-sample forecasts is different to the mean of the actual data is also low on all the 
forecasts. Root mean squared Error that is an estimate of the standard deviation of the 
out-of-sample is also low on most cases with the exception of forecasts for β3 of NSS 
where it is 0.396. 
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5  Conclusion 
The results presented in this chapter showed that the shape parameter for the 
Nelson-Siegel model should be fitted at 0.25 and the shape parameters for 
Nelson-Siegel-Svensson Model should be fitted at 0.714 and 10 respectively to obtain 
better fits. Analysis of time series parameters and statistics of the two models showed that 
the models are good in fitting the term structure of a Zimbabwean bank but the 
coefficients of variability were significantly affected by the noise that was prevalent in the 
market data of savings certificates used in the study. The t-test that was conducted to test 
the adjusted R2 of the models showed that statistically Nelson-Siegel-Svensson model fits 
the market data better that Nelson-Siegel model. The average R2 of Nelson-Siegel and 
Nelson-Siegel-Svensson model was 24.4% and 26.4% respectively. Despite the low levels 
of R2 the researcher concludes that the models are fit for fitting the yield curves for a bank 
because a large proportion of variability of the model was lost due to the volatility nature 
of the market data used in the study. The two models showed that they have exceptional 
out-of sample forecasting capabilities when using AR (1) as the forecasting model. 

 
5.1 Prototype developed 
The prototype (TeSffim) is a tool that can be used in the estimation and forecasting of 
daily term structures for a bank. The design of the prototype used the results obtained 
from the research titled “Estimation of Term Structures using Nelson-Siegel and 
Nelson-Siegel-Svensson Models: Case of a Zimbabwean Bank” The prototype is in the 
form of a Macro-Enabled Excel File (.xlsm) and it was designed using Visual Basics in 
Excel 2010. The Prototype uses data from an Exposure Limits report of a bank and the 
deliverables are a fitted smooth yield curve that can be used as a reference in building 
Fund Transfer Pricing System. The prototype should therefore be run on machines with 
Office 2010 or later versions for maximum performance and Macros must be enabled for 
the prototype to function. 
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Appendix 
 
A1: Correlations 

Correlation Analysis-Nelson Siegel 
  Bo B1 B2 r2 

Bo 1 -0.69996 -0.78795 -0.01891 
B1 -0.69996 1 0.12006 -0.61416 
B2 -0.78795 0.12006 1 0.56956 
r2 -0.01891 -0.61416 0.56956 1 

 
Correlation Analysis-Nelson Siegel Svensson Model 

  βo β1 β2 β3 r2 
βo 1 -0.99921 -0.98388 -0.99886 -0.26194 
β1 -0.99921 1 0.976083 0.99992 0.227363 
β2 -0.98388 0.976083 1 0.974269 0.411925 
β3 -0.99886 0.99992 0.974269 1 0.220185 
r2 -0.26194 0.227363 0.411925 0.220185 1 
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A2: Results for Nelson-Siegel Model parameters 
i.) Estimation statistics for β0 
Dependent Variable: NS_B0   
Method: Least Squares   
Date: 04/23/14   Time: 19:27   
Sample (adjusted): 3/05/2012 10/31/2012  
Included observations: 161 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.003283 0.001559 2.105897 0.0368 

NS_B0(-1) 0.965910 0.016476 58.62535 0.0000 
     
     R-squared 0.955783     Mean dependent var 0.094005 

Adjusted R-squared 0.955505     S.D. dependent var 0.011258 
S.E. of regression 0.002375     Akaike info criterion -9.235427 
Sum squared resid 0.000897     Schwarz criterion -9.197149 
Log likelihood 745.4519     Hannan-Quinn criter. -9.219884 
F-statistic 3436.931     Durbin-Watson stat 1.865832 
Prob(F-statistic) 0.000000    
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ii.) Estimation statistics for β1 
Dependent Variable: NS_B1   
Method: Least Squares   
Date: 04/23/14   Time: 21:02   
Sample (adjusted): 3/05/2012 10/31/2012  
Included observations: 161 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000245 0.000449 0.545134 0.5864 

NS_B1(-1) 1.000530 0.009848 101.6016 0.0000 
     
     R-squared 0.984831     Mean dependent var -0.039740 

Adjusted R-squared 0.984736     S.D. dependent var 0.022141 
S.E. of regression 0.002736     Akaike info criterion -8.952638 
Sum squared resid 0.001190     Schwarz criterion -8.914360 
Log likelihood 722.6874     Hannan-Quinn criter. -8.937096 
F-statistic 10322.89     Durbin-Watson stat 1.680162 
Prob(F-statistic) 0.000000    
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i.) Estimation statistics for β2 
Dependent Variable: NS_B2   
Method: Least Squares   
Date: 04/23/14   Time: 20:16   
Sample (adjusted): 3/05/2012 10/31/2012  
Included observations: 161 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.002697 0.001531 1.760985 0.0802 

NS_B2(-1) 0.937058 0.019757 47.42995 0.0000 
     
     R-squared 0.933987     Mean dependent var 0.056911 

Adjusted R-squared 0.933571     S.D. dependent var 0.050177 
S.E. of regression 0.012932     Akaike info criterion -5.845804 
Sum squared resid 0.026593     Schwarz criterion -5.807526 
Log likelihood 472.5872     Hannan-Quinn criter. -5.830262 
F-statistic 2249.600     Durbin-Watson stat 1.800307 
Prob(F-statistic) 0.000000    
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A3: Results for Nelson-Siegel-Svensson Model parameters 
i.) Estimation statistics for β0 
Dependent Variable: B0   
Method: Least Squares   
Date: 04/23/14   Time: 15:39   
Sample (adjusted): 3/05/2012 10/31/2012  
Included observations: 161 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.006538 0.007807 0.837440 0.4036 

B0(-1) 0.936134 0.020042 46.70929 0.0000 
     
     R-squared 0.932073     Mean dependent var 0.006490 

Adjusted R-squared 0.931646     S.D. dependent var 0.378895 
S.E. of regression 0.099061     Akaike info criterion -1.773826 
Sum squared resid 1.560266     Schwarz criterion -1.735548 
Log likelihood 144.7930     Hannan-Quinn criter. -1.758283 
F-statistic 2181.758     Durbin-Watson stat 1.799652 
Prob(F-statistic) 0.000000    
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ii.) Estimation statistics for β1 
Dependent Variable: B1   
Method: Least Squares   
Date: 04/23/14   Time: 18:47   
Sample (adjusted): 3/05/2012 10/31/2012  
Included observations: 161 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -0.002582 0.007652 -0.337409 0.7363 

B1(-1) 0.937684 0.019662 47.68934 0.0000 
     
     R-squared 0.934656     Mean dependent var 0.053246 

Adjusted R-squared 0.934245     S.D. dependent var 0.374162 
S.E. of regression 0.095945     Akaike info criterion -1.837731 
Sum squared resid 1.463677     Schwarz criterion -1.799452 
Log likelihood 149.9373     Hannan-Quinn criter. -1.822188 
F-statistic 2274.273     Durbin-Watson stat 1.799141 
Prob(F-statistic) 0.000000    
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iii.) Estimation statistics for β2 
Dependent Variable: B2   
Method: Least Squares   
Date: 04/23/14   Time: 19:00   
Sample (adjusted): 3/05/2012 10/31/2012  
Included observations: 161 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.008314 0.008234 1.009688 0.3142 

B2(-1) 0.933942 0.020321 45.95998 0.0000 
     
     R-squared 0.929997     Mean dependent var 0.215383 

Adjusted R-squared 0.929556     S.D. dependent var 0.329472 
S.E. of regression 0.087446     Akaike info criterion -2.023247 
Sum squared resid 1.215841     Schwarz criterion -1.984969 
Log likelihood 164.8714     Hannan-Quinn criter. -2.007704 
F-statistic 2112.319     Durbin-Watson stat 1.806542 
Prob(F-statistic) 0.000000    
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Estimation statistics for β3 
Dependent Variable: B3   
Method: Least Squares   
Date: 04/23/14   Time: 19:11   
Sample (adjusted): 3/05/2012 10/31/2012  
Included observations: 161 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -0.021603 0.037404 -0.577556 0.5644 

B3(-1) 0.937250 0.019988 46.88961 0.0000 
     
     R-squared 0.932560     Mean dependent var 0.105718 

Adjusted R-squared 0.932135     S.D. dependent var 1.817027 
S.E. of regression 0.473351     Akaike info criterion 1.354384 
Sum squared resid 35.62566     Schwarz criterion 1.392662 
Log likelihood -107.0279     Hannan-Quinn criter. 1.369926 
F-statistic 2198.636     Durbin-Watson stat 1.797856 
Prob(F-statistic) 0.000000    
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