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ABSTRACT

The primary objective of this paper is to produce a framework that could
used to construct a historical data base of zero-coupon and forward yield cu
estimated from Government of Canada securities’ prices. The secondary obje
is to better understand the behaviour of a class of parametric yield curve mo
specifically, the Nelson-Siegel and the Svensson methodologies. These m
specify a functional form for the instantaneous forward interest rate, and the
must determine the function parameters that are consistent with market price
government debt. The results of these models are compared with those of a
curve model used by the Bank of Canada for the last 15 years. The Bank of
ada’s existing model, based on an approach developed by Bell Canada, fits
called “par yield” curve to bond yields to maturity and subsequently extracts z
coupon and “implied forward” rates. Given the pragmatic objectives of t
research, the analysis focuses on the practical and deals with two key problem
estimation problem (the choice of the best yield curve model and the optimiza
of its parameters); and the data problem (the selection of the appropriate set o
ket data). In the absence of a developed literature dealing with the practical si
parametric term structure estimation, this paper provides some guidance for
wishing to use parametric models under “real world” constraints.

In the analysis of the estimation problem, the data filtering criteria are h
constant (this is the “benchmark” case). Three separate models, two altern
specifications of the objective function, and two global search algorithms are ex
ined. Each of these nine alternatives is summarized in terms of goodness o
speed of estimation, and robustness of the results. The best alternative is the
sson model using a price-error-based, log-likelihood objective function and a gl
search algorithm that estimates subsets of parameters in stages. This estim
approach is used to consider the data problem. The authors look at a numb
alternative data filtering settings, which include a more severe or “tight” setting
an examination of the use of bonds and/or treasury bills to model the short-en
the term structure. Once again, the goodness of fit, robustness, and speed of e
tion are used to compare these different filtering possibilities. In the final analy
it is decided that the benchmark filtering setting offers the most balanced appr
to the selection of data for the estimation of the term structure.

This work improves the understanding of this class of parametric mod
and will be used for the development of a historical data base of estimated
structures. In particular, a number of concerns about these models have
resolved by this analysis. For example, the authors believe that the log-likelih
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specification of the objective function is an efficient approach to solving the e
mation problem. In addition, the benchmark data filtering case performs well r
tive to other possible filtering scenarios. Indeed, this parametric class of mo
appears to be less sensitive to the data filtering than initially believed. Howe
some questions remain; specifically, the estimation algorithms could be impro
The authors are concerned that they do not consider enough of the domain
objective function to determine the optimal set of starting parameters. Fin
although it was decided to employ the Svensson model, there are other func
forms that could be more stable or better describe the underlying data. Thes
remaining questions suggest that there are certainly more research issues
explored in this area.
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RÉSUMÉ

Le principal objectif des auteurs est d’établir un cadre d’analyse perme
d’élaborer une base de données chronologiques relative aux courbes théoriq
taux de rendement coupon zéro et de taux à terme estimées à partir des cou
titres du gouvernement canadien. Les auteurs cherchent également à mieux
prendre le comportement de la catégorie des modèles paramétriques de cou
rendement, plus précisément, le modèle de Nelson et Siegel et celui de Sven
Ces modèles définissent une forme fonctionnelle pour la courbe des taux d’in
à terme instantanés, et l’utilisateur doit déterminer les valeurs des paramètres
fonction qui sont compatibles avec les prix des titres du gouvernement sur le
ché. Les résultats obtenus à l’aide de ces modèles sont comparés à ceux du m
de courbe de rendement que la Banque du Canada utilise depuis quinze a
modèle actuel de la Banque, qui s’inspire d’une approche élaborée par
Canada, estime une courbe de « rendement au pair » à partir des taux de rend
à l’échéance des obligations puis en déduit les taux de rendement coupon z
les « taux à terme implicites ». Étant donné l’aspect pragmatique des obje
visés, l’analyse est centrée sur deux importants problèmes d’ordre pratique
problème de l’estimation (le choix du meilleur modèle pour représenter la co
de rendement et de la méthode d’optimisation des paramètres) et le problèm
choix des données (c’est-à-dire la sélection d’un échantillon approprié parm
données du marché). Vu l’absence d’une littérature abondante traitant des a
pratiques de l’estimation de modèles paramétriques relatifs à la structure des
d’intérêt, les auteurs fournissent quelques conseils à l’intention de ceux
désirent utiliser les modèles paramétriques dans le cadre des contrainte
« monde réel ».

Pour analyser le problème de l’estimation, les auteurs fixent les critère
filtrage des données (il s’agit de leur « formule de référence » pour le filtrage
examinent trois modèles distincts, deux spécifications différentes de la fon
objectif et deux algorithmes de recherche globale. Les résultats obtenus à pa
chacun des neuf schémas envisagés sont évalués en fonction de leur robuste
l’adéquation statistique et de la vitesse d’estimation. Le schéma qui donn
meilleurs résultats est le modèle de Svensson qui comporte 1) une fonction ob
de type fonction de vraisemblance logarithmique basée sur les erreurs de p
2) un algorithme de recherche globale qui estime les sous-ensembles de pa
tres par étapes. Les auteurs font ensuite appel à ce schéma d’estimation pour
ser le problème du choix des données. Ils se penchent sur un certain nomb
combinaisons différentes des critères de filtrage des données; ils utilisen
ensemble de critères de filtrage très contraignants d’une part et cherchent à é
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d’autre part si la portion à court terme de la structure des taux est mieux modé
à l’aide des obligations ou des bons du Trésor (ou des deux types de titres)
différentes formules de filtrage sont elles aussi comparées entre elles sous l’
de l’adéquation statistique, de la robustesse et de la vitesse d’estimation
auteurs concluent en définitive que la formule de filtrage de référence est la m
adaptée au choix des données qui serviront à l’estimation de la structure des

Le travail des auteurs contribue à améliorer la compréhension de ce typ
modèles paramétriques et permettra d’élaborer une base de données c
logiques relative aux structures de taux estimées. Un certain nombre de que
soulevées par ces modèles ont été résolues dans l’étude. Par exemple, les
croient que la spécification d’une fonction objectif de type fonction de vraise
blance logarithmique est une approche efficace pour résoudre le problèm
l’estimation. De plus, la formule de filtrage de référence donne de bons résu
comparativement aux autres formules. Cette catégorie de modèles paramét
semble en effet moins sensible que prévu au filtrage des données. Tout
certaines questions demeurent. En particulier, les algorithmes d’estimation
vent encore être améliorés. Les auteurs craignent de ne pas avoir couvert une
grande portion de l’espace de la fonction objectif pour trouver l’ensemble opti
des valeurs de départ des paramètres. En outre, bien qu’ils aient décidé d’utili
modèle de Svensson, il se peut que d’autres formes fonctionnelles se révèlen
stables ou mieux en mesure d’expliquer les données sous-jacentes. Ces
derniers points laissent croire qu’il subsiste d’autres questions qui méritent d
explorées dans ce domaine.
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1. INTRODUCTION

Zero-coupon and forward interest rates are among the most fundamental tools in fin
Applications of zero-coupon and forward curves include measuring and understanding m
expectations to aid in the implementation of monetary policy; testing theories of the
structure of interest rates; pricing of securities; and the identification of differences in the
retical value of securities relative to their market value. Unfortunately, zero-coupon and for
rates are not directly observable in the market for a wide range of maturities. They m
therefore, be estimated from existing bond prices or yields.

A number of estimation methodologies exist to derive the zero-coupon and forward c
from observed data. Each technique, however, can provide surprisingly different shapes fo
curves. As a result, the selection of a specific estimation technique depends on its final us
main interest of this paper in the term structure of interest rates relates to how it may be u
provide insights into market expectations regarding future interest rates and inflation. Give
this application does not require pricing transactions, some accuracy in the “goodness of fi
be foregone for a more parsimonious and easily interpretable form. It is nevertheless imp
that the estimated forward and zero-coupon curves fit the data well.

The primary objective of this paper is to produce a framework that could be used to
erate a historical data base of zero-coupon and forward curves estimated from Governm
Canada securities’ prices. The purpose of this research is also to better understand the be
of a different class of yield curve model in the context of Canadian data. To meet these objec
this paper revisits the Bank of Canada’s current methodology for estimating Canadian
ernment zero-coupon and forward curves. It introduces and compares this methodology
alternative approaches to term structure modelling that rely upon a class of parametric m
specifically, the Nelson-Siegel and the Svensson methodologies.

The Bank’s current approach utilizes the so-called Super-Bell model for extracting
zero-coupon and forward interest rates from Government of Canada bond yields. This app
uses essentially an ordinary least-squares (OLS) regression to fit a par yield curve from ex
bond “yields to maturity” (YTM). It then employs a technique termed “bootstrapping” to de
zero-coupon rates and subsequently implied forward rates. The proposed models are qu
ferent from the current approach and begin with a specified parametrized functional form fo
instantaneous forward rate curve. From this functional form, described later in the text, a
tinuous zero-coupon rate function and its respective discount function are derived. An op
zation process is used to determine the appropriate parameters for these functions that bes
existing bond prices.
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The research has pragmatic objectives, so the focus throughout the analysis is highly
tical. It deals with two key problems: theestimation problem, or the choice of the best yield curve
model and the optimization of its parameters; and thedata problem, or the selection of the appro
priate set of market data. The wide range of possible filtering combinations and estim
approaches makes this a rather overwhelming task. Therefore, examination is limited to
principal dimensions. Specifically, the analysis begins with the definition of a “benchmark
tering case. Using this benchmark, the estimation problem is examined by analyzing diff
objective function specifications and optimization algorithms. After this analysis, the best op
zation approach is selected and used to consider two different aspects of data filtering. To a
plish this, different data filtering scenarios are contrasted with the initial benchmark case.

Section 2 of the paper introduces the current Super-Bell model and the proposed N
Siegel and Svensson models and includes a comparison of the two modelling appro
Section 3 follows with a description of Canada bond and treasury bill data. This section
details the two primary data filtering dimensions: the severity of data filtering, and the selecti
observations at the short-end of the maturity spectrum. The empirical results, presen
Section 4, begin with the treatment of the estimation problem followed by the data problem
final section, Section 5, presents some concluding remarks.

2. THE MODELS

The following section details how the specific yield curve models selected are use
extract theoretical zero-coupon and forward interest rates from observed bond and treasu
prices. The new yield curve modelling methodology introduced in this section is fundamen
different from the current Super-Bell model. To highlight these differences, the current me
ology is discussed briefly and then followed by a detailed description of the new approach
advantages and disadvantages of each approach are also briefly detailed.

2.1 The Super-Bell model

The Super-Bell model, developed by Bell Canada Limited in the 1960s, is quite stra
forward. It uses an OLS regression of yields to maturity on a series of variables including p
transformations of the term to maturity and two coupon terms. The intent is to derive a so-c
par yield curve.1 A par yield curve is a series of yields that would be observed if the sampl
bonds were all trading at par value. The regression equation is as follows:

(EQ 1)

1. See Section A.4, “Par yields,” on page 42 in the technical appendix for a complete definition of par yields

YM C, β0 β1 M( ) β2 M
2( ) β3 M

3( ) β4 M
0.5( ) β+ 5 Mlog( ) β6 C( ) β7 C M⋅( ) ε+ + + + + + +=
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This regression defines yield to maturity (YM,C) as a function of term to maturity (M) and

the coupon rate (C). Once the coefficients (β0 throughβ6) have been estimated, another regress

is performed to extract the par yields. By definition, a bond trading at par has a coupon t
equal to the yield (that is,YM,C = C). As a result, the expression above can be rewritten as follo

(EQ 2)

Using the coefficients estimated from the first equation and the term to maturity for
bond, a vector of par yields (YM) is obtained through this algebraic rearrangement of the origi

regression equation. The second step uses this vector of par yields and runs an addition
mation, using the same term-to-maturity variables but without the coupon variables as follo
create a “smoothed” par yield curve:

(EQ 3)

In 1987, however, an adjustment was made to the par yield estimation. Specifically,
ferent estimation is used to obtain a par yield vector for bonds with a term to maturity of 15 y
and greater. The following specification is used, making the explicit assumption that the te
maturity is a linear function of the coupon rate.2 The impact of this approach, which makes th
coupon effect constant for all bonds with terms to maturity of 15 years and greater, is to flatte
the long end of the yield curve.

(EQ 4)

The par yield values for longer-term bonds are therefore solved using the same assum
of YM,C = C, as follows:

(EQ 5)

The par yield values are combined for all maturities and the new par yield curve is
mated using the same approach as specified above in equation (2). From these estimated
cients, the corresponding theoretical par yields can be obtained for any set of maturities.

2. This is unlike the specification for yields with a term to maturity of less than 15 years where the coupon ef
permitted to take a non-linear form.

YM

β0 β1 M( ) β2 M
2( ) β3 M

3( ) β4 M
0.5( ) β+ 5 Mlog( )+ + + +

1 β6 β7 M( )+–
-------------------------------------------------------------------------------------------------------------------------------------------------- ε+=

YM β0 β1 M( ) β2 M
2( ) β3 M

3( ) β4 M
0.5( ) β+ 5 Mlog( ) ε+ + + + +=

YM 15> C, β0 β1 C( ) ε+ +=

YM 15>
β0

1 β1–
--------------=
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The determination of the par yield curve is only the first step in calculating zero-cou
and forward interest rates. The next step is to extract the zero-coupon rates from the co
maturity par yield curve, using a technique termed “bootstrapping.” Bootstrapping provides
coupon rates for a series of discrete maturities. In the final step, the theoretical zero-coupo
curve is used to calculate implied forward rates for the same periodicity. Implied forward rate
culation and bootstrapping are described in the Technical Appendix of this paper.

Advantages of the Super-Bell model, which dates back more than 25 years, includ
following:

• The model is not conceptually difficult.

• The model is parametrized analytically and is thus straightforward to solve.

There are, however, several criticisms of the Super-Bell model:

• The resulting forward curve is a by-product of a lengthy process rather than the prima
output of the Super-Bell model.

• The Super-Bell model focuses exclusively on YTM rather than on the actual cash flows
the underlying bonds.

• The zero-coupon curve can be derived only for discrete points in time. It is, therefor
necessary to make additional assumptions to interpolate between the discrete zero-cou
rates.

As a consequence of these shortcomings, the Super-Bell model can lead to forward
with very strange shapes (particularly at longer maturities) and poor fit of the underlying
prices or yields.

2.2 The Nelson-Siegel and Svensson models

The basic parametric model presented in this paper was developed by Charles Nels
Andrew Siegel of the University of Washington in 1987. The Svensson model is an extensi
this previous methodology.3 Since the logic underlying the models is identical, the text will foc
on the more sophisticated Svensson model.

3. As a result, the Svensson model is often termed the extended Nelson and Siegel model. This termino
avoided in the current paper because other possible extensions to the base Nelson and Siegel model e
Nelson and Siegel (1987) and Svensson (1994).
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Continuous interest rate concepts are critically important to any understanding o
Nelson-Siegel and Svensson methodologies. Consequently, these concepts will be briefly
duced prior to the models being described. In general practice, interest rates are compoun
discrete intervals. In order to construct continuous interest rate functions (i.e., a zero-coup
forward interest rate curve), the compounding frequency must also be made continuous. It s
be noted, however, that the impact on zero-coupon and forward rates due to the change from
annual to continuous compounding is not dramatic.4

On a continuously compounded basis, the zero-coupon ratez(t,T) can be expressed as
function of the discretely compounded zero-coupon rateZ(t,T) and the term to maturity,T, as
follows:

(EQ 6)

The continuously compounded discount factor can be similarly expressed:

(EQ 7)

The forward rate can also be represented as a continuously compounded rate:

(EQ 8)

Another important concept is the instantaneous forward rate ( ). This is the

limit of the previous expression (shown in equation 8) as the term to maturity of the forward
tract tends towards zero:

(EQ 9)

The instantaneous forward rate can be defined as the marginal cost of borrowing (o
ginal revenue from lending) for an infinitely short period of time. In practice, it would be eq
alent to a forward overnight interest rate. The continuously compounded zero-coupon rate f
same period of time,z(t,T), is the average cost of borrowing over this period. More precisely,
zero-coupon rate at timet with maturity T is equal to the average of the instantaneous forwa
rates with trade dates between timet and T. The standard relationship between marginal a

4. For example, a 10-year zero-coupon bond discounted with a 10 per cent, 10-year annually compounde
coupon rate has a price of $38.54. The same zero-coupon bond discounted with a 10 per cent, 1
continuously compounded zero-coupon rate has a price of $36.79.

z t T,( ) e

Z t T,( )
100

----------------- T t–( ) 365⁄⋅ 
 

=

disc t T,( ) e

Z t T,( )
100

----------------- T t–( ) 365⁄⋅ 
 –

=

f t τ T, ,( ) T t–( ) z t T,( )⋅[ ] τ t–( ) z t τ,( )⋅[ ]–
T τ–

----------------------------------------------------------------------------------------=

f t τ T, ,( )INST

f t τ T, ,( )INST f t τ T, ,( )
τ T→

lim=
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average cost can be shown to hold between forward rates (marginal cost) and zero-coupo
(average cost); that is, the instantaneous forward rate is the first derivative of the zero-coup
with respect to term to maturity. Thus, if equation 6 is differentiated with respect to time, the
lowing expression will be obtained:

(EQ 10)

Equivalently, the zero-coupon rate is the integral of the instantaneous forward rate
interval from settlement (timet) to maturity (timeT), divided by the number of periods to
determine a period zero-coupon rate. It is summarized as follows:

(EQ 11)

This important relationship between zero-coupon and instantaneous forward rate
critical component of the Nelson-Siegel and Svensson models.

The Svensson model is a parametric model that specifies a functional form for the in
taneous forward rate,f(TTM), which is a function of the term to maturity(TTM). The functional

form is as follows:5

(EQ 12)

The original motivation for this modelling method was a desire to create a parsimon
model of the forward interest rate curve that could capture the range of shapes generally s
yield curves: a monotonic form, humps at various areas of the curve, and s-shapes. This
possibility among numerous potential functional forms that could be used to fit a term struc
The Svensson model is a good choice, given its ability to capture the stylized facts describi
behaviour of the forward curve.6

This model has six parameters that must be estimated,β0, β1, β2, β3, τ1, andτ2. As illus-
trated in Figure 1, these parameters identify four different curves, an asymptotic value, the g

5. f(TTM)t is the functional equivalent off(t,τ,T)INST with (τ-t) → (T-t) = TTM.

6. Note, however, that this approach is essentially an exercise in curve fitting, guided by stylized facts, and
directed by any economic theory.

f t τ T, ,( )INST z t T,( ) T t–( ) z t T,( )∂
t∂

-------------------⋅+=

z t T,( )

f t τ T, ,( )INST xd

x t=

T

∫
T t–

--------------------------------------------------------=

f TTM( )t β0 β1 e

TTM
τ1

------------ 
 –

 
 
 
 
 

β2
TTM

τ1
------------ e

TTM
τ1

------------ 
 –

 
 
 
 
 

β3
TTM

τ2
------------ e

TTM
τ2

------------ 
 –

 
 
 
 
 

+ + +=
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shape of the curve, and two humps or U-shapes, which are combined to produce the Sv
instantaneous forward curve for a given date. The impact of these parameters on the shap
forward curve can be described as follows:7

• β0 = This parameter, which must be positive, is the asymptotic value off(TTM)t. The curve
will tend towards the asymptote as theTTM approaches infinity.

• β1 = This parameter determines the starting (or short-term) value of the curve in terms
deviation from the asymptote. It also defines the basic speed with which the curve ten
towards its long-term trend. The curve will have a negative slope if this parameter
positive and vice versa. Note that the sum ofβ0 andβ1 is the vertical intercept.

• τ1 = This parameter, which must also be positive, specifies the position of the first hump
U-shape on the curve.

• β2 = This parameter determines the magnitude and direction of the hump. Ifβ2 is positive,
a hump will occur atτ1 whereas, ifβ2 is negative, a U-shaped value will occur atτ1.

• τ2 = This parameter, which must also be positive, specifies the position of the second hu
or U-shape on the curve.

• β3 = This parameter, in a manner analogous toβ2, determines the magnitude and direction
of the second hump.

7. The difference between the Nelson-Siegel (one-hump) and Svensson (two-hump) versions of the model 
functional form of the forward curve. In the one-hump version, the forward curve is defined as follows:

As a result, this model has only four parameters that require estimation; theβ3 andτ2 parameters do not exist in
this model (i.e.,β2 andτ2 equal zero in the Nelson-Siegel model).

f TTM( )t β0 β1 e

TTM
τ1

------------ 
 –

 
 
 
 
 

β2
TTM

τ1
------------ e

TTM
τ1

------------ 
 –

 
 
 
 
 

+ +=
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Figure 1. A decomposition of the forward term structure functional form

Having specified a functional form for the instantaneous forward rate, a zero-co
interest rate function is derived. This is accomplished by integrating the forward function. As
viously discussed, this is possible, given that the instantaneous forward rate (which is simp
marginal cost of borrowing) is the first derivative of the zero-coupon rate (which is similarly
average cost of borrowing over some interval). This function is summarized as follows:

(EQ 13)
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It is then relatively straightforward to determine the discount function from the ze
coupon function.

(EQ 14)

Once the functional form is specified for the forward rate, it permits the determinatio
the zero-coupon function and finally provides a discount function. The discount function pe
the discounting of any cash flow occurring throughout the term-to-maturity spectrum.

The instantaneous forward rate, zero-coupon, and discount factor functions are c
related, with the same relationship to the six parameters. The zero-coupon and discount
functions are merely transformations of the original instantaneous forward rate function. Th
count function is the vehicle used to determine the price of a set of bonds because the p
value of a cash flow is calculated by taking the product of this cash flow and its correspondin
count factor. The application of the discount factor function to all the coupon and principal
ments that comprise a bond provides an estimate of the price of the bond. The discount
function, therefore, is the critical element of the model that links the instantaneous forward
and bond prices.

Every different set of parameter values in the discount rate function (which are eq
lently different in the zero-coupon and instantaneous forward rate functions) translates int
ferent discount factors and thus different theoretical bond prices. What is required is to dete
those parameter values that are most consistent with observed bond prices. The basic pro
determining the optimal parameters for the original forward function that best fit the bond d
outlined as follows:8

A. A vector of starting parameters [β0, β1, β2, β3, τ1, τ2] is selected.

B. The instantaneous forward rate, zero-coupon, and discount factor functions are deter
using these starting parameters.

C. The discount factor function is used to determine the present value of the bond cash
and thereby to determine a vector of theoretical bond prices.

D. Price errors are calculated by taking the difference between the theoretical and obs
prices.

8. For more details of this process, see Technical Appendix, Section D, “Mechanics of the estimation,” on pa

disc TTM( )t e

z TTM( )t
100
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E. Two different numerical optimization procedures, discussed later in greater detail, are
to minimize the decision variable subject to certain constraints on the parameter valu9

F. Steps B through E are repeated until the objective function is minimized.

The final parameter estimates are used to determine and plot the desired zero-coup
forward interest rate values. Figure 2 details the previously outlined process following the
from A to F.

Figure 2. Steps in the estimation of Nelson-Siegel and Svensson models

As indicated, the process describes the minimization of price errors rather than
errors. Price errors were selected because the yield calculations necessary to minimize
errors are prohibitively time consuming in an iterative optimization framework. In contrast to

9. In particular, theβ0 andτ1 values are forced to take positive values and the humps are restricted to fall betw
and 30 years, which corresponds to the estimation range.

Instantaneous forward rate
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functionz TT Mt βo β1 β2 β3 τ1 τ2,,,,,( )

Discount rate
function
disc TT Mt βo β1 β2 β3 τ1 τ2,,,,,( )

Matrix of bond cash flows
(CF)

BOND1

BOND2

…
…
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… … … …
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the discount
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…
…
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–
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ε2

…
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εn
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Numerical optimization:
Each time the value of the
parameters is changed, this
process is repeated. The
final parameters selected are
those that minimize the
selected objective function.

Decision variable:  Log-likelihood approach or sum of squared price
errors with penalty parameter
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calculation of the bond price, each YTM calculation relies on a time-consuming nume
approximation procedure.10

It is nevertheless critical that the model be capable of consistently fitting the YTMs o
full sample of bonds used in the estimation. The intention is to model the yield curve, not the
curve. Focusing on price errors to obtain YTMs can create difficulties. As a result, an impo
element in the optimization is the weighting of price errors, a procedure necessary to corre
the heteroskedasticity that occurs in the price errors. To understand how this is problemati
needs to consider the relationship between yield, price, and the term to maturity of a bond
relationship is best explained by the concept of duration.11 A given change in yield leads to a
much smaller change in the price of a 1-year treasury bill than a 30-year long bond. The cor
of this statement is that a large price change for a 30-year long bond may lead to an ide
change in yield when compared to a much smaller price change in a 1-year treasury bill. The
mization technique that seeks to minimize price errors will therefore tend to try to reduce the
eroskedastic nature of the errors by overfitting the long-term bond prices at the expense
short-term prices. This in turn leads to the overfitting of long-term yields relative to short-
yields and a consequent underfitting of the short-end of the curve. In order to correct fo
problem, each price error is simply weighted by a value related to the inverse of its duration
general weighting for each individual bond has the following form:12

whereDi is the MacCauley duration of the ith bond.13 (EQ 15)

There are a number of advantages of the Nelson-Siegel and Svensson approach co
with the Super-Bell model:

• The primary output of this model is a forward curve, which can be used as a
approximation of aggregate expectations for future interest rate movements.

10. Moreover, the time required for the calculation is an increasing function of the term to maturity of the unde
bond. In addition, the standard Canadian yield calculations, particularly as they relate to accrued intere
somewhat complicated and would require additional programming that would serve only to lengthen the
to-yield calculation.

11. See Technical Appendix, Section A.3 on page 42 for more on the concept of duration.

12. The specifics of the weighting function are described in the Technical Appendix, Section B, on page 43
that this general case has been expanded to also permit altering the weighting of benchmark bond and/or
bill price errors.

13. This is consistent with the Bliss (1991) approach.

ωi

1 Di⁄

1 D j⁄
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• This class of models focuses on the actual cash flows of the underlying securities rat
than using the yield-to-maturity measure, which is subject to a number of shortcomings14

• The functional form of the Nelson-Siegel and Svensson models was created to be capa
of handling a variety of the shapes that are observed in the market.

• These models provide continuous forward, zero-coupon, and discount rate functio
which dramatically increase the ease with which cash flows can be discounted. They a
avoid the need to introduce other models for the interpolation between intermediate poi

Nevertheless, there are some criticisms of this class of term structure model. Firstly,
is a general consensus that the parsimonious nature of these yield curve models, while us
gaining a sense of expectations, may not be particularly accurate for pricing securities.15

The main criticism of the Nelson-Siegel and Svensson methodologies, however, is
their parameters are more difficult to estimate relative to the Super-Bell model. These estim
difficulties stem from a function that, while linear in the beta parameters, is non-linear in the
Moreover, there appear to be multiple local minima (or maxima) in addition to a global minim
(or global maximum). To attempt to obtain the global minimum, it is therefore necessa
estimate the model for many different sets of starting values for the model parameters. Com
certainty on the results would require consideration of virtually all sets of starting values ove
domain of the function; this is a very large undertaking considering the number of param
With six parameters, all possible combinations of three different starting parameter values a

to different starting values, while five different starting values translate i

different sets of starting values. The time required to estimate the model, there

acts as a constraint on the size of the grid that could be considered and hence the degree
cision that any estimation procedure can attain.

By way of example, Figures 3 and 4 demonstrate the sensitivity of the Nelson-Siege
Svensson models to the starting parameter values used for a more dramatic date in the s
17 January 1994. In Figure 3, only 29 of the 81 sets of starting values of the parameters f
Nelson-Siegel model on that date give a forward curve close to the best one estimated with

14. See Technical Appendix, Section A.2, “Yield to maturity and the ‘coupon effect’,” page 40 for more detail

15. This is because, by the very nature as a “parsimonious” representation of the term structure, they fit the d
accurately than some alternative models such as cubic splines.

3
6

729=

5
6

15 625,=
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model.16 For the results of the Svensson model, presented in Figure 4, only 11 of the 256 s
starting parameters are close to the best curve.

Figure 3. Estimation of Nelson-Siegel forward curves for 17 January 1994
(81 different sets of starting parameters)

16. The definition of closeness to the best forward curve is based on estimated value for the objective functio
in the estimation. An estimated curve is close to the best one when its estimated objective function value is
than 0.1 per cent of the value of the highest objective function calculated. For further details on the ob
functions used, see Technical Appendix, Section D, “Mechanics of the estimation,” on page 46.
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Figure 4. Estimation of Svensson forward curves for 17 January 1994
(256 different sets of starting parameters)

In Section 4, the estimation issues are addressed directly by comparing the performa
the Nelson-Siegel, the Svensson, and the Super-Bell yield curve models in terms of the goo
of fit of the estimated curves to the Canadian data, the time required to obtain them, and
robustness to different strategies of optimization.

3. DATA

Prior to discussing the details of the various term structure models examined in this 
it is necessary to describe Government of Canada bond and treasury bill data. The followin
tions briefly describe these instruments and the issues they present for the modelling of th
structure of interest rates.
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3.1 Description of the Canadian data

The two fundamental types of Canadian-dollar-denominated marketable securities i
by the Government of Canada are treasury bills and Canada bonds.17 As of 31 August 1998, the
Government of Canada had Can$89.5 billion of treasury bills and approximately Can$296 b
of Canada bonds outstanding. Together, these two instruments account for more than 85 p
of the market debt issued by the Canadian government.18

Treasury bills, which do not pay periodic interest but rather are issued at a discoun
mature at their par value, are currently issued at 3-, 6-, and 12-month maturities. Issuanc
rently occurs through a biweekly “competitive yield” auction of all three maturities. The 6-mo
and 1-year issues are each reopened once on an alternating 4-week cycle and ultimately
fungible with the 3-month bill as they tend towards maturity. At any given time, therefore, t
are approximately 29 treasury bill maturities outstanding.19 Due to limitations in data availability,
however, there is access only to 5 separate treasury bill yields on a consistent basis: the 1-
2-month, 3-month, 6-month, and 1-year maturities.

Government of Canada bonds pay a fixed semi-annual interest rate and have a
maturity date. Issuance involves maturities across the yield curve with original terms to ma
at issuance of 2, 5, 10, and 30 years.20 Each issue is reopened several times to improve liquid
and achieve “benchmark status.”21 Canada bonds are currently issued on a quarterly “competi
yield” auction rotation with each maturity typically auctioned once per quarter.22 In the interests
of promoting liquidity, Canada has set targets for the total amount of issuance to ac
“benchmark status”; currently, these targets are Can$7 billion to Can$10 billion for each ma
The targets imply that issues are reopened over several quarters in order to attain the d
liquidity.

17. See Branion (1995) for a review of the Government of Canada bond market, and Fettig (1994) for a review
treasury bill market.

18. The remaining market debt consists of Canada Saving Bonds, Real Return Bonds, and foreign c
denominated debt.

19. Effective 18 September 1997, the issuance cycle was changed from a weekly to a biweekly auction sc
Previously, there were always at least 39 treasury bill maturities outstanding at any given time. The chan
the treasury bill auction schedule were designed to increase the amount of supply for each maturity by re
the number of maturity dates that exist for treasury bills.

20. Canada eliminated 3-year bond issues in early 1997; the final 3-year issue was 15 January 1997.

21. A “benchmark” bond is analogous to an “on-the-run” U.S. Treasury security in that it is the most actively t
security for a given maturity.

22. It is important to note that Government of Canada bond yields are quoted on an Actual/Actual day coun
net of accrued interest. The accrued interest, however, is by market convention calculated on an Actual/3
count basis. See Barker (1996) and Kiff (1996).
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At any given time, therefore, there are at least four benchmark bonds outstanding
terms to maturity of approximately 2, 5, 10, and 30 years.23 These bonds are the most active
traded in the Canadian marketplace. They are also often subject to underpricing in comp
with other Canada bonds because of a stronger demand. It could then be argued that thes
should be excluded from the sample to avoid any downward bias in the estimation of the Can
yield curve. Nevertheless, given that the Bank’s main interest in estimating yield curves
provide insights into the evolution of market expectations, it is considered essential that the
mation contained in these bonds be incorporated into the yield curve estimation. Therefore,
benchmark bonds are forced to appear in all data sets.

Historically, the Government of Canada has also issued bonds with additional featur
top of the “plain vanilla” structure just described. Canada has in the past issued bonds wit
lable and extendible features and a small number of these bonds remain outstanding. In ad
“purchase fund” bonds, which require periodic partial redemptions prior to maturity, were
issued in the 1970s. Finally, Real Return Bonds (RRB), which pay a coupon adjusted for ch
in the Canadian consumer price index, were introduced in December 1991. There are two
maturities outstanding for a total of approximately Can$10 billion.24 These bonds with unique
features—purchase fund bonds and RRB—are flagged in the data base and subsequently e
from the data set. Real Return Bonds are also excluded as their yields, which are quoted on
rather than a nominal basis, are not directly comparable with nominal yields.25

3.2  Why are the data important?

The only bonds selected from the universe of Government of Canada bond and tre
bill data are those that are indicative of current market yields. This is because, regardless
type of model selected, the results of a given yield curve model depend importantly on the
used to generate it. The examination of different filterings is therefore essential to provide
dence in the choice of the model and to ensure its efficient application. As a result, a syst
filters is used to omit bonds that create distortions in the estimation of the yield curve. Analy
centred on two specific aspects of data filtering that are considered strategic: the severity of
tering (or its “tightness”), and the treatment of securities at the short-end of the term stru
The severity of filtering includes filters dealing with the maximum divergence from par value
the minimum amount outstanding required for the inclusion of a bond. The short-end of the
structure involves questions surrounding the inclusion or exclusion of treasury bills and b

23. As previously discussed, new issues may require two or more reopenings to attain “benchmark status
result, the decision as to whether or not a bond is a benchmark is occasionally a matter of judgment. Thi
lead to situations where more than one benchmark may exist for a given maturity.

24. See Côté, Jacob, Nelmes, and Whittingham (1996) for a discussion of the Canadian Real Return Bond.

25. There are approximately nine bonds with special features in the government’s portfolio.
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with short term to maturities. The two main filtering categories are considered in the follow
discussion.

3.3 Approaches to the filtering of data

3.3.1  Severity of data filtering: Divergence from par and amount outstanding

At present, there are 81 Canada bonds outstanding. This translates into an averag
size of roughly Can$3.5 billion. In reality, however, the amount outstanding of these bonds v
widely from Can$100 million to Can$200 million to just over Can$10 billion. Outstanding bo
of relatively small size relate to the previous practice of opening a new maturity for a given
when the secondary market yield levels for the bond differed from the bond’s coupon by
than 50 basis points. This is no longer the practice, given the benchmark program. At prese
current maturity is continued until the benchmark target sizes are attained irrespective of wh
the reopening occurs at a premium or a discount. As bonds should have the requisite deg
liquidity to be considered, bonds with less than a certain amount outstanding should be exc
from the data set.26 A relatively small value is assigned to the “minimum amount outstandin
filter in order to keep as many bonds as possible in the sample. One could argue, howeve
only bonds with greater liquidity should be kept in the sample. This is an issue that will be in
tigated in the analysis of the data problem.27

The term “divergence from par value” is used to describe the possible tax consequen
bonds that trade at large premiums or discounts to their par value. Under Canadian tax legis
interest on bonds is 100 per cent taxable in the year received, whereas the accretion of the
discount to its par value is treated as a capital gain and is only 75 per cent taxable and pay
maturity or disposition (whichever occurs first). As a result, the purchase of a bond at a larg
count is more attractive, given these opportunities for both tax reduction and tax deferral
willingness of investors to pay more for this bond, given this feature, can lead to price distor
To avoid potential price distortions when large deviations from par exist, those bonds that
more than a specified number of basis points at a premium or a discount from their coupo
should be excluded.28 The number of basis points selected should reflect a threshold at whic
tax effect of a discount or premium is believed to have an economic impact.29 The tax impact is

26. For example, if the specified minimum amount outstanding is Can$500 million, no bonds would be exclud
15 June 1989 and eight bonds on 15 July 1998.

27. Of note, the amount outstanding of each individual issue could not be considered before January 1993 be
data constraints.

28. If this filter were set at 500 basis points, 8 bonds would be excluded on 15 June 1989 and 26 bonds on
1998.

29. See Litzenberger and Rolfo (1984).



18

tions
uation
eover,

lated
ounts

on or
ted.
he fil-
g cri-
to the
lead
tions
blem,
the

nada
that

with
s and
matic
uidity

lls in
tively

m the
ntage.

asury

ith the
nds
yed a
r more
somewhat mitigated in the Canadian market, however, as the majority of financial institu
mark their bond portfolios to market on a frequent basis. In this case, changes in market val
become fully taxable immediately, thereby reducing these tax advantages somewhat. Mor
some financial institutions are not concerned by these tax advantages.30

The divergence from par value and the amount outstanding filters are intimately re
because bonds that trade at large discounts or premiums were typically issued with small am
outstanding during transition periods in interest rate levels. Consequently, any evaluati
testing of this filter must be considered jointly with the minimum amount outstanding tolera
These two filtering issues combined can then be identified as the severity or tightness of t
tering constraints. A looser set of divergence from par value and amount outstanding filterin
teria should provide robustness in estimation but can introduce unrepresentative data
sample. Conversely, more stringent filtering criteria provide a higher quality of data but can
to poor results given its sparsity. Specifically, tighter filtering reduces the number of observa
and can make estimation difficult given the dispersion of the data. To cope with this data pro
the empirical analysis will include an evaluation of the sensitivity of the models’ results to
degree of tightness chosen for these two filters.

3.3.2  The short-end: Treasury bills and short-term bonds

Choosing the appropriate data for modelling the short-end of the curve is difficult. Ca
bonds with short terms to maturity (i.e., roughly less than two years) often trade at yields
differ substantially from treasury bills with comparable maturities.31 This is largely due to the sig-
nificant stripping of many of these bonds, which were initially issued as 10- or 20-year bonds
relatively high coupons leading to substantial liquidity differences between short-term bond
treasury bills.32 From a market perspective, these bond observations are somewhat proble
due to their heterogeneity in terms of coupons (with the associated coupon effects) and liq
levels.

As a result of these liquidity concerns, one may argue for the inclusion of treasury bi
the estimation of the yield curve to ensure the use of market rates for which there is a rela

30. For example, earnings of pension funds on behalf of their beneficiaries are taxable only at withdrawal fro
pension accounts. Therefore, most investment managers of pension funds are indifferent to any tax adva

31. See Kamara (1990) for a discussion of differences in liquidity between U.S. Treasury bills and U.S. Tre
bonds with the same term to maturity.

32. In 1993, reconstitution of Government of Canada strip bonds was made possible in combination w
introduction of coupon payment fungibility. At that point in time, a number of long-dated high-coupon bo
were trading at substantial discounts to their theoretical value. The change in stripping practices pla
substantial role in permitting the market to arbitrage these differences. See Bolder and Boisvert (1998) fo
information on the Government of Canada strip market.
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high degree of confidence. Treasury bills are more uniform, more liquid, and do not ha
coupon effect given their zero-coupon nature. The question arises as to whether or not
short-term bonds and/or treasury bills in the data sample. Using only treasury bills would
the estimation problems related to the overwhelming heterogeneity of coupon bonds at the
end of the maturity spectrum and anchor the short-end of the yield curves by the only zero-c
rates that are observed in the Canadian market.

Recent changes in the treasury bill market have nonetheless complicated data conc
the short-end of the curve. Declining fiscal financial requirements have led to sizable reducti
the amount of treasury bills outstanding. In particular, the stock of treasury bills has fallen
$152 billion as at 30 September 1996 to $89.5 billion as at 31 August 1998. This reducti
stock with no corresponding reduction in demand has put downward pressure on treasu
yields.33 This raises concerns about the use of treasury bills in the data sample. This data pr
will also be addressed in the empirical analysis, by an estimation of the sensitivity of the mo
results to the type of data used to model the short-end of the maturity spectrum.

4. EMPIRICAL RESULTS

To perform an empirical analysis of the behaviour of the different yield curve models
their sensitivity to data filtering conditions, a sample of 30 dates has been chosen, spann
last 10 years. The dates were selected to include 10 observations from an upward-sloping
and an inverted term structure environment. This helps to give an understanding of how the
performs under different yield curve slopes. The following table (Table 1) outlines the var
dates selected. It is worth noting that these dates could not be randomly selected as there a
a few instances in the last 10 years of flat or inverted Canadian term structure environments
result, the flat and inverted term structure examples are clustered around certain periods.

33. See Boisvert and Harvey (1998) for a review of recent developments in the Government of Canada
treasury bill market.
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Table 1. Dates selected for estimation from different term structure environments

As discussed in Section 3.3, there is a wide range of possible data filtering combina
that could be analyzed and their interaction is complex. As a result, examination has been l
to a few dimensions. To do so, first a “benchmark” filtering case is defined, based on a set o
liminary choices for each type of filtering criteria. The benchmark case is summarized as fol

Table 2. Filter settings for the benchmark case

This benchmark data filtering case is held constant for a variety of different estima
approaches (detailed in Section 4.1) and deals explicitly with the estimation problem. Afte
analysis is complete, the best optimization approach is selected and used to consider thre
native data filtering scenarios. Each of these alternatives is contrasted in Section 4.2 wi
benchmark case to examine the models’ sensitivity to the two main aspects that were discu
the previous section. Thus the estimation problem is considered while holding constant th
issue, and the data problem is subsequently examined holding the estimation problem con

4.1 The “estimation problem”

As illustrated in Section 2.2, the Nelson-Siegel and Svensson models are sensitive
estimation procedure chosen and particularly to the starting values used for the param
Moreover, the time required to increase the robustness of an estimated curve, or the confide

Positively sloped
term structure

Flat term structure Inverted term
structure

15 February 1993 15 August 1988 15 January 1990

15 July 1993 18 August 1988 15 May 1990

17 January 1994 23 August 1988 15 August 1990

16 May 1994 29 August 1988 13 December 1990

15 August 1994 15 February 1991 14 April 1989

15 February 1995 25 February 1991 15 June 1989

17 July 1995 4 March 1991 15 August 1989

15 February 1996 11 March 1991 16 October 1989

15 August 1996 15 June 1998 15 December 1989

16 December 1996 15 July 1998 15 March 1990

Type of data filter Filter setting

Minimum amount outstanding Can$500 million

Divergence from par: | Coupon - YTM | 500 basis points

Inclusion of treasury bills Yes

Inclusion of bonds with less than 2 years TTM No
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having a global minimum, increases exponentially with the number of different starting va
chosen for each parameter. To address this problem of estimation, a number of procedu
examined to find a reasonable solution to this trade-off between time, robustness, and ac
Specifically, the strategy for dealing with the estimation problem was to consider a number o
ferent approaches to the problem for the 30 different dates chosen and to examine the result
the benchmark selection of the data. The Nelson-Siegel and Svensson curves are not dete
in a statistical estimation but rather in a pure optimization framework. Therefore, an obje
function must be specified and subsequently minimized (or maximized), using a numerical
mization procedure. Consequently, the approaches differ in terms of the formulation o
objective function and the details of the optimization algorithm.

Two alternative specifications of the objective function are examined. Both approa
seek to use the information in the bid-offer spread. One uses alog-likelihoodspecification while
the other minimizes a special case of the weightedsum of squared price errors. The log-like-
lihood formulation replaces the standard deviation in the log-likelihood function with the
offer spread from each individual bond. The sum of squared price error measure puts a re
weight on errors occurring inside the bid-offer spread but includes a penalty for those obs
tions occurring outside the bid-offer spread. These two formulations are outlined in greater
in the Technical Appendix.

Each optimization algorithm can be conceptually separated into two parts: the globa
local search components. The global search is defined as the algorithm used to find the
priate region over the domain of the objective function. The distinction is necessary due t
widely varying parameter estimates received for different set of starting values. The intent
broadly determine a wide range of starting values over the domain of the function and then r
local search algorithm at each of these points. The local search algorithm finds the solution
each set of starting values using either Sequential Quadratic Programming (a gradient
method) and/or the Nelder and Meade Simplex Method (a direct search, function-evalu
based method). Two basic global search algorithms are used:

• Full estimation (or “coarse” grid search):This approach uses a number of different sets
of starting values and runs a local search for each set and then selects the best solutio
both the Nelson-Siegel and Svensson models, theβ0 andβ1 parameters were not varied but
rather set to the long-run term to maturity and the difference between the longest a
shortest yield to maturity. In the Nelson-Siegel model, therefore, 9 combinations of th
remaining 2 parameters (β2 andτ1) are used in the grid for a total of 81 sets of starting
parameters. In the Svensson model, there are 4 combinations of 4 parameters (β2, β3, τ1,
τ2) for a total of 256 starting values. In the full-estimation algorithm, the Sequential
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Quadratic Programming (SQP) algorithm is used; this is replaced by the Simplex meth
when the SQP algorithm fails to converge.34

• Partial estimation: The second approach uses partial estimation of the parameter
Specifically, this global search algorithm divides the parameters into two groups, theβs (or
linear parameters) and theτs (or the non-linear parameters). The algorithm works in a
number of steps where one group of parameters is fixed while the other is estimated.35 The
full details of this algorithm are presented in the Technical Appendix, Section E.2, “Partia
estimation algorithm,” on page 52.

In total, four separate approaches to parameter estimation are examined for each
two parametric models: two separate formulations of the objective function and two sep
global search algorithms. The estimation of the parameters for the Super-Bell model is a s
matter of OLS regression. This means that, while there are only three models from whi
select, there is a total of nine sets of results (this is depicted graphically in Figure 5).

Figure 5. The analysis of the “estimation problem”

The use of a numerical optimization procedure neither provides standard error mea
for parameter values nor permits formal hypothesis testing. Instead, therefore, the app
involves a comparison among a variety of summary statistics. Three main categories of c
have been selected: goodness of fit, speed of estimation, and robustness of the solution. A

34. This idea comes from Ricart and Sicsic (1995) although they actually impose these as constraints. In this
they are used as starting points. See Technical Appendix, Section E.1, “Full-estimation algorithm,” on pa
for more detail.

35. In the partial-estimation algorithm, the SQP algorithm is used exclusively because there were no conve
problems when estimating a smaller subset of parameters.

Model:

Log-likelihood

SSE with penalty

Full-estimation

Partial-estimation

objective function

parameter objective
function

algorithm

algorithm

Full-estimation
algorithm

Partial-estimation
algorithm

Nelson and
Siegel or
Svensson
Model

There are nine separate scenarios. Four approaches for
each parametric model and one for the Super-Bell model.
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of different statistics were selected to assess the performance of each of the approache
each of these categories. The following sections discuss and present each group of criteria

4.1.1  Robustness of solution

Robustness of solution can be defined as how certain one is that the final solut
actually the global minimum or maximum. This measurement criterion is examined first bec
it provides an understanding of the differences and similarities between the optimization
egies. Two measures of robustness are considered.

The first measure, in Table 3, compares the best objective function values for each
alternative optimization approaches. Only objective function values based on the same
with the same estimation algorithm are directly comparable (i.e., one compares the figu
Table 3 vertically rather than horizontally). Consequently, Table 3 compares the full- and pa
estimation algorithms for each formulation of the objective function. A number of observat
follow:

• In all cases, save one, the Nelson-Siegel partial- and full-estimation algorithms lead to t
same results. The one exception is the full-estimation algorithm, which provides a super
value for the sum of squared errors objective function on 18 August 1988.

• The Svensson model full-estimation algorithm provides in all cases a superior or identic
result to the partial-estimation algorithm. The full-estimation algorithm outperforms th
partial on eight occasions for the log-likelihood objective function and on seven occasio
for the sum of squared errors objective function.

• The magnitude of a superior objective function value is also important. In aggregate, t
differences in objective function are quite small and it will be important to look to othe
statistics to see the practical differences (particularly the goodness of fit) in the results
these different solutions.
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Norma n/a

Flat n/a

Invert n/a

Total n/a
Table 3. Best objective function value

The second statistic to consider is the number of solutions in the global search algo
that converge to within a very close tolerance (0.01 per cent) of the best solution. Table 4 ou
the aggregate results.

• This is a rather imperfect measure for comparison among global search algorithms beca
the partial estimation fixes sets of parameters, which necessarily constrain it from t
optimal solution. It is nonetheless useful for comparison between different specifications
the objective function, between different models, and between different term structu
environments.

• A not-surprising result is that the simpler Nelson-Siegel model has a much higher rate
similar solutions (approximately 60 per cent for the full estimation versus approximate
30 per cent for the Svensson model).

• It appears more difficult to estimate an upward-sloping term structure than one that is fl
or inverted. For the full-estimation algorithm, the flat and inverted term structures hav
roughly twice as many similar solutions as in the upward-sloping yield curve environme

• The data do not suggest a substantial difference between the two alternative formulatio
of the objective function.

s

Nelson-Siegel model Svensson model Nelson-Siegel model Svensson model
Su

B
m
O

estim

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Log-likelihood objective function Sum of squared errors objective function

l 100,707.6 100,707.6 86,799.7 87,755.1 51,813.5 51,813.5 23,997.7 25,908.4

61,707.3 61,707.3 54,616.2 54,837.2 97,587.4 97,743.8 83,405.1 83,643.4

ed 24,006.0 24,006.0 21,016.5 21,432.2 40,660.5 40,660.5 34,681.5 35,182.6

62,140.3 62,140.3 54,144.1 54,674.8 63,353.8 63,406.0 47,361.5 48,244.8
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Norma n/a

Flat n/a

Invert n/a

Total n/a
Table 4. Percentage of solutions in global search within 0.01 per cent of best solution

4.1.2  Goodness of fit

This is arguably the most important of the three criteria because these measures in
how well the model and its associated estimation procedure describe the underlying d
should be stated at the beginning that, in those instances in the previous section, particula
the Nelson-Siegel model where the solutions were identical, the results will be identical.
section will therefore focus on the differences between models, objective functions, and o
zation strategy where appropriate. Five different measures have been selected to determ
“fit” of the various strategies. The measures focus on yield errors. This is important bec
although price is used in the estimation of the models, it is appropriately weighted to ens
good fit to the bond yield to maturity.

Table 5 displays the first measure of goodness of fit, the yield root mean square

(RMSEyield).
36 In a general sense, this measure can be interpreted as the standard deviation

yield errors.

• In aggregate, the Svensson model appears to perform about one basis point better than
Nelson-Siegel model.

• The data also suggest that all the models do a superior job of fitting an upward-sloping te
structure relative to their flat or inverted counterparts. Caution is suggested in th
assessment, given the relatively skewed nature of the sample selection. There may
reason to suspect that the periods from which the inverted and flat term structure dates w
selected are different from the broader range of dates selected for the upward-sloping te
structure.

s

Nelson-Siegel model Svensson model Nelson-Siegel model Svensson model
Su

B
m
O

estim

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Log-likelihood objective function Sum of squared errors objective function

l 58.8% 10.0% 17.1% 6.1% 58.6% 5.7% 16.8% 1.8%

53.1% 17.3% 35.8% 5.4% 52.5% 1.3% 35.1% 8.9%

ed 76.8% 23.0% 35.1% 9.8% 76.3% 34.0% 32.9% 2.4%

62.8% 16.8% 29.3% 7.1% 62.5% 17.5% 28.2% 4.4%

36. The root mean square error is defined as .RMSEyield

ei yield, eyield–( )2

n
--------------------------------------------

i 1=

N

∑=
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Norma 1.3

Flat 5.7

Invert 6.2

Total 1.1
• Despite the differences in the solutions between the full- and partial-estimation algorith
of the Svensson model, the results are quite similar. Indeed, the full-estimation algorith
provides an improvement of only one-tenth of a basis point over the partial estimation
This would suggest that the practical differences among the solutions are not large.

• Note that the Svensson and Nelson-Siegel models provide a marked improvement rela
to the Super-Bell model in the upward-sloping and inverted term structure environmen
but are roughly similar when the term structure is flat.

Table 5. Root mean square yield error (in basis points)

The RMSEyield measure is essentially a standard-deviation-based measure that us
squared deviations from the mean as its numerator. As a consequence, it is rather sensitive
liers. For this reason, an alternative measure of yield errors is also examined: the average a
value of yield errors(AABSEyield).

37 This measure is less sensitive to extreme points. The res
of this measure are illustrated in Table 6.

• Given the reduced sensitivity to large values, it is hardly surprising to note that the erro
are in general somewhat smaller (roughly about five basis points for the total sample). T
fact that the differences betweenRMSEyield and theAABSEyield are larger for the flat and
inverted dates than for the normal dates suggests that there are more outliers occurring
these dates.

• In general, however, the same relationships that appear in theRMSEyield are evident in
these results. That is, the Svensson model slightly outperforms the Nelson-Siegel mo
and the upward-sloping term structure is a better fit than the flat and inverted yield cur
environments.

s

Nelson-Siegel model Svensson model Nelson-Siegel model Svensson model
Su

B
m
O

estim

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Log-likelihood objective function Sum of squared errors objective function

l 8.6 8.6 6.5 6.5 8.8 8.6 6.5 6.5 1

25.5 25.5 24.4 25.0 25.5 25.5 24.4 24.9 2

ed 18.1 18.1 18.5 18.5 18.1 18.1 18.5 18.5 2

17.4 17.4 16.5 16.7 17.4 17.4 16.5 16.6 2

37. The average absolute value of yield errors is defined as: .AABSEyield

ei yield, eyield–

n
---------------------------------------

i 1=

N

∑=
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Norma 9.5

Flat 7.0

Invert 8.4

Total 5.0
• It is interesting to note that the Svensson model full-estimation algorithm fits marginall
less well relative to the partial-estimation algorithm (on a margin of one-tenth of one bas
point). This is the opposite of the results found usingRMSEyieldmeasure.

• Again, both the Svensson and Nelson-Siegel models provide a substantially improved
over the Super-Bell model (on aggregate by three to four basis points) in upward-slopi
and inverted environments. All models appear to perform similarly in a flat term structur
setting.

Table 6. Average absolute value of yield errors (in basis points)

The next measure of goodness of fit is termed the hit ratio. This statistic describe
number of bonds with an estimated price inside the bid-offer spread as a percentage of th
number of bonds estimated. The intent of this measure is to get a sense of the number of
that were essentially perfectly priced. This is particularly interesting when considering the fo
lation of the objective function measures, which explicitly use the bid-offer spread. Table 7
trates the results.

• The hit ratio is roughly two times higher for the upward-sloping relative to the flat and
inverted term structures. That is to say, approximately twice as many estimated bond yie
fall between the bid and offer spread for the upward-sloping term structure observations

• The Nelson-Siegel model appears to perform better than the Svensson model for the
and inverted term structures and worse for an upward-sloping yield curve. In aggrega
they even out and show little difference.

• Once again, in all cases, the Nelson-Siegel and Svensson models outperform the Su
Bell model on this measure except for the flat term structure dates.

s

Nelson-Siegel model Svensson model Nelson-Siegel model Svensson model
Su

B
m
O

estim

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Log-likelihood objective function Sum of squared errors objective function

l 6.6 6.6 5.1 5.0 6.6 6.6 5.1 5.0

17.4 17.4 16.4 16.8 17.4 17.5 16.4 16.7 1

ed 13.4 13.5 13.1 13.1 13.4 13.4 13.1 13.1 1

12.5 12.5 11.5 11.6 12.5 12.5 11.5 11.6 1
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Norma .9%

Flat .8%

Invert .1%

Total .3%

Date

per-
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odel
LS
ation

Norma 5.8%

Flat 2.5%

Invert 0.8%

Total 6.4%
Table 7. Hit ratio (estimated yield inside bid-offer spread/total bonds)

The following two tables, Tables 8 and 9, provide a sense of whether or not the estim
are biased in one direction or another. These two measures, which are essentially rough m
of dispersion, describe the percentage of estimated yields exceeding the bid yield and th
centage of estimated yields below the offer yield.

• The Super-Bell model tends to overestimate yields to maturity or, alternatively, t
underestimate bond prices.

• For upward-sloping yield curves, the Nelson-Siegel model tends to underestimate t
actual yields to maturity, while the Svensson model does not seems to be biased in
direction.

Table 8. Percentage of bonds with estimated yields exceeding the bid

• For flat curves, both the parametric models tend to underestimate the actual yields
maturity, while they seem to underestimate yields to maturity for inverted curves, althoug
by a lesser amount than the Super-Bell model.

• In general, the Svensson model appears to perform slightly better than the Nelson-Sie
model with less tendency to be biased in one direction.

s

Nelson-Siegel model Svensson model Nelson-Siegel model Svensson model
Su

B
m
O

estim

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Log-likelihood objective function Sum of squared errors objective function

l 9.7% 9.7% 11.5% 11.5% 9.7% 9.7% 11.4% 11.5% 6

4.3% 4.3% 3.4% 3.2% 4.3% 4.2% 3.7% 3.5% 3

ed 5.0% 5.0% 3.8% 4.1% 5.0% 5.0% 4.0% 4.2% 2

6.3% 6.3% 6.3% 6.3% 6.3% 6.3% 6.3% 6.4% 4

s

Nelson-Siegel model Svensson model Nelson-Siegel model Svensson model
Su

B
m
O

estim

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Log-likelihood objective function Sum of squared errors objective function

l 47.0% 47.0% 50.0% 48.4% 47.0% 47.0% 50.2% 48.7% 5

47.5% 47.5% 46.5% 46.9% 47.5% 47.9% 46.6% 47.0% 5

ed 56.3% 56.3% 53.2% 53.5% 56.3% 56.3% 53.2% 53.7% 6

50.3% 50.3% 50.0% 49.6% 50.3% 50.4% 50.0% 49.8% 5
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Norma 4.2%

Flat 7.5%

Invert 9.2%

Total 3.6%

atical
Table 9. Percentage of bonds with estimated yields below the offer

4.1.3  Speed of estimation

The final criterion, the speed of optimization, is one of large practical importance. G
the finite amount of time and computing resources available to solve this problem, a fair am
of importance will be placed on this criterion.38

The first measure examined is the average amount of time required for each indiv
local search within the larger global search algorithm. The full- and partial-estimation algori
cannot be explicitly compared, given that full estimation has a much harder task (for each
vidual iteration) relative to the partial-estimation approach. It nevertheless provides some
esting information regarding the differences between the two techniques. Table 10 detai
measure.

• The full-estimation algorithm, for both models and objective function values, appears
take on average 10 times longer per iteration than the partial-estimation approach.

• The Svensson model requires approximately four times as much time compared with
Nelson-Siegel model for both objective function formulations and global estimatio
algorithms.

• It does not appear that there are substantial differences in the average amount of t
required per iteration for the different term structure environments.

• The log-likelihood objective function is slightly faster (on the order of about one second
for both the Nelson-Siegel and Svensson models.

s

Nelson-Siegel model Svensson model Nelson-Siegel model Svensson model
Su

B
m
O

estim

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Log-likelihood objective function Sum of squared errors objective function

l 53.0% 53.0% 50.0% 51.6% 53.0% 53.0% 49.8% 51.3% 4

52.5% 52.5% 53.5% 53.1% 52.5% 52.1% 53.4% 53.0% 4

ed 43.7% 43.7% 46.8% 46.5% 43.7% 43.7% 46.8% 46.3% 3

49.7% 49.7% 50.0% 50.4% 49.7% 49.6% 50.0% 50.2% 4

38. All the estimations were performed using a Sun Microsystems Ultra 10 workstation and the mathem
software, Matlab.
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Norma 0.5

Flat 0.5

Invert 0.5

Total 0.5
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Norma 0013

Flat 0013

Invert 0013

Total 0013
Table 10. Average time per local search algorithm (in seconds)

Table 11 summarizes the final measure to be considered: the total amount of tim
global search. It is worth noting that, while this statistic gives a good approximation of the am
of time required for the partial-estimation algorithm, it tends to underestimate the time req
for the full-estimation algorithm. Specifically, it has not been possible to capture the time req
by the SQP algorithm in those instances where the SQP algorithm did not converge an
replaced by the Simplex algorithm.

• In aggregate, the full estimations take roughly six times longer than the partial-estimati
algorithms.

• As was the case with the previous measure, there do not appear to be substan
differences in the time required for estimation of different term structure environments.

• The log-likelihood and sum of squared error objective functions require approximately th
same amount of time for the full-estimation algorithm. The partial-estimation algorithm
however, appears to be marginally faster (10 to 15 minutes) for the log-likelihood functio

Table 11. Total time for global search algorithm (in hours)
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Nelson-Siegel model Svensson model Nelson-Siegel model Svensson model
Su

B
m
O

estim

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Log-likelihood objective function Sum of squared errors objective function

l 11.3 1.7 47.5 4.1 11.5 1.6 48.5 4.4

10.7 2.0 49.0 4.6 11.1 2.2 50.3 6.2

ed 13.9 2.1 46.3 4.5 14.2 2.2 47.3 4.6

12.0 1.9 47.6 4.4 12.3 2.0 48.7 5.1

s

Nelson-Siegel model Svensson model Nelson-Siegel model Svensson model
Su

B
m
O

estim

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Full-
estimation
algorithm

Partial-
estimation
algorithm

Log-likelihood objective function Sum of squared errors objective function

l 0.25 0.17 3.20 0.44 0.26 0.18 3.27 0.60 0.0

0.24 0.37 3.31 0.54 0.25 0.30 3.40 0.88 0.0

ed 0.31 0.47 3.13 0.66 0.32 0.43 3.20 0.71 0.0

0.27 0.33 3.21 0.55 0.28 0.30 3.29 0.73 0.0
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4.1.4  The “estimation” decision

As indicated, the final step in the “estimation problem” is to select the most promi
model and optimization strategy in order to examine two specific aspects of filtering the data
model ultimately selected was the Svensson model with a log-likelihood objective function u
the partial-estimation algorithm. There were several reasons for this decision:

• Although the full-estimation procedure appears to provide slightly better solutions than th
partial-estimation algorithm, the resulting goodness-of-fit measures were not different in
practical sense.

• The full-estimation algorithm is prohibitively time consuming. On average, by
conservative measures, the full procedure required roughly six times longer than t
partial-estimation procedure.

• There does not appear, in the statistics considered, to be much in the way of practi
difference between the two objective function formulations. As a result, the decision
somewhat arbitrary. The log-likelihood specification was finally selected because it
slightly faster for the partial-estimation algorithm.

4.2 The “data problem”

This section includes a sensitivity analysis of two aspects of data filtering that are
sidered important in the Canadian data: the severity of the filtering criteria, and the treatm
the short-end of the term structure. Accordingly, the analysis performed in this section com
the results obtained with the benchmark filtering relative to three alternative filtering settin
scenario with a more severe (or “tight”) setting, one with only bonds included at the short
and one with both bonds and treasury bills at the short-end (see Figure 6). The settings
benchmark data filtering are outlined in Table 2. The different filtering is compared using th
optimization approach from the previous section, that is, the Svensson yield curve with a log
lihood objective function using the partial-estimation algorithm for the same 30 dates used
initial analysis.
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Figure 6. The analysis of the “data problem”

To ensure the comparability among the different filtering settings and models, the
summary statistics as those presented in the previous section are used: goodness of fit, rob
and speed of estimation. In addition, these statistics are calculated using the same un
observations as in the benchmark case, rather than the actual unfiltered observations of the
alternative filterings.

The average number of unfiltered observations for each shape of curve for the differe
terings applied is listed in Table 12. The use of both bonds and bills at the short-end has the
observations while the “tight” case, not surprisingly, has fewer observations relative to the alt
tives. The fact that there are more observations in the “bonds only” case suggests there ar
bonds at the short-end of the term structure than the five treasury bill observations used
benchmark case.

Table 12. Number of observations used in estimation (unfiltered observations)

Datesa

a. Of note, the average number of available observations for normal, flat, and inverted curves is 95.8,
119.4, and 125.8 respectively, for a total average of 113.7 observations.

Benchmark case “Bonds and bills”
case

“Bonds only”
case

“Tight” case

Normal 52.3 61.2 56.2 26.2

Flat 74.5 94.2 89.2 56.5

Inverted 83.3 101.7 97.2 65.5

Total 70.0 85.7 80.9 49.4

Benchmark

Severity of data

Treatment of the

“Tight” case

filtering settings

short-end of term
structure

“Bonds only”

“Bonds and bills”

case

Uses more stringent settings
for amount outstanding and
divergence from par value

Uses both bonds and t-bills to
estimate short-end of curve

Uses only bonds to estimate
the short-end of curve

Note that all different settings are compared using the Svensson
model, the log-likelihood objective function, and the partial-
estimation algorithm.
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4.2.1  Tightness of data filtering

The first filtering issue deals with the severity of the filtering constraints. Given that
benchmark case filtering settings are not particularly stringent, a more severe or “tight” set
tering criteria is analyzed (see Table 13). Note that the minimum amount outstanding has
increased to $2.5 billion and the divergence from par value to 250 basis points. While thes
tings are clearly debatable, they do represent a substantial tightening from the benchmark 

Table 13. Filter settings: “Tight” case

Table 14 illustrates the summary statistics for the goodness of fit. The following obse
tions are made:

• The tight filtering tends to outperform the benchmark case filtering for theRMSEyield and
AABSEyield measures in flat or inverted term structures although they are broadly similar
an upward-sloping environment.

• When considering the hit ratio, however, there does not appear to be a significant differen
between the two filtering options.

• The benchmark case filtering performs marginally better for upward-sloping yield curves

Table 14. Goodness of fit: “Tight” vs. benchmark

Type of data filter “Tight” filtering “Benchmark” filtering

Minimum amount outstanding Can$2,500 million Can$500 million

Divergence from par: | Coupon - YTM | 250 basis points 500 basis points

Inclusion of treasury bills Yes Yes

Inclusion of bonds with less than 2 years TTM No No

Dates
Yield root mean square error

(in basis points)
Average absolute value of

yield errors (in basis points)
Hit ratio (%)

Benchmark
filtering

Tight
filtering

Benchmark
filtering

Tight
filtering

Benchmark
filtering

Tight
filtering

Normal 6.5 6.9 5.0 5.4 11.5% 11.9%

Flat 25.0 19.6 16.8 13.7 3.2% 3.1%

Inverted 18.5 15.8 13.1 11.7 4.1% 5.4%

Total 16.7 14.1 11.6 10.2 6.3% 6.8%
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By reviewing the statistics on the speed of estimation (presented in Table 15), the
lowing conclusions can be made:

• The average time taken per local search algorithm is generally very close for the tw
alternatives.

• Similarly, the total time used for the global search algorithm is broadly comparable fo
both filterings. Nevertheless, the tight filtering takes slightly more time on flat curve
estimations while the benchmark filtering is somewhat slower on inverted curv
estimations.

Table 15. Speed of estimation: “Tight” vs. benchmark

Finally, the results of the robustness statistics, as illustrated in Table 16, are as follow

• On average, the tight filtering attains a superior objective function value relative to th
benchmark filtering. This confirms the generally better fit observed in the goodness-of-
statistics.

• The percentage of estimated objective functions that are within 0.1 per cent of the b
value obtained is of similar magnitude in both filtering cases.

Table 16. Robustness: “Tight” vs. benchmark

Dates

Average time per local
search algorithm

(in seconds)

Total time for global search
algorithm
(in hours)

Benchmark
filtering

Tight
filtering

Benchmark
filtering

Tight
filtering

Normal 4.1 4.1 0.44 0.44

Flat 4.6 4.8 0.55 0.67

Inverted 4.5 4.5 0.66 0.60

Total 4.4 4.5 0.55 0.57

Dates

Best objective function
values

Percentage of solutions in
global search within 0.01% of

best solution

Benchmark
filtering

Tight
filtering

Benchmark
filtering

Tight
filtering

Normal 87,755.1 87,732.9 21.6% 20.2%

Flat 54,837.2 49,560.0 18.2% 17.9%

Inverted 21,432.2 20,352.3 31.3% 31.9%

Total 54,674.8 52,548.4 23.7% 23.3%
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4.2.2  Data filtering at the short-end of the term structure

At the short-end of the curve, the data filtering question involves the inclusion of trea
bills relative to the use of bond observations. To examine robustness of the model to the
selected for this sector of the curve, three possible alternatives are considered: only treasu
(the benchmark case), only bonds, and both bonds and treasury bills. The two new alterna
termed “bonds only” and “bonds and bills”—have the following settings:

Table 17. Filter settings: “Bonds only” and “bonds and bills”

Comparing these two filtering alternatives to the benchmark case on the basis of goo
of fit (see Table 18), it is observed that:

• There is no clear winner among the two principal yield error measures. For upward-slopi
yield curves, there are smaller errors when both “bonds and bills” are used at the short-e
of the maturity spectrum. Benchmark filtering generally outperforms the two alternative
for flat term structures. Finally, in an inverted environment, the benchmark case is super
when considering theRMSEyield while the bond and bill case is the best when using
AABSEyield.The differences are nonetheless in most instances quite small.

• The hit ratio appears to favour the benchmark filtering for upward-sloping curves. Th
"bonds only" case is the clear winner in flat and inverted term structure environments.

Table 18. Goodness of fit: Short-end vs. benchmark

Type of data filter “Bonds only”
filtering

“Bonds and
bills” filtering

“Benchmark”
filtering

Minimum amount outstanding Can$500 million Can$500 million Can$500 million

Divergence from par: | Coupon - YTM | 500 basis points 500 basis points 500 basis points

Inclusion of treasury bills No Yes Yes

Inclusion of bonds with less than 2 years TTM Yes Yes No

Dates

Yield root mean square error
(in basis points)

Average absolute value of
yield errors (in basis points)

Hit ratio (%)

Bench-
mark

Bonds
only

Bonds
and
bills

Bench-
mark

Bonds
only

Bonds
and
bills

Bench-
mark

Bonds
only

Bonds
and
bills

Normal 6.5 6.8 6.4 5.0 5.3 4.8 11.5% 14.4% 14.0%

Flat 25.0 28.5 27.3 16.8 15.8 15.2 3.2% 7.8% 5.9%

Inverted 18.5 19.8 17.2 13.1 13.9 13.0 4.1% 6.0% 5.0%

Total 16.7 18.4 17.0 11.6 11.7 11.0 6.3% 9.4% 8.3%
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The speed-of-estimation measures are detailed in Table 19.

• The average time per local search algorithm is faster in all cases under the benchmark c

• This translates into a much lower total time of estimation for the benchmark filtering cas
than for the other two alternatives. Notably, the estimations using only bonds at the sho
end of the maturity spectrum take twice as much time relative to the benchmark filtering

Table 19. Speed of estimation: Short-end vs. benchmark

Table 20 details the robustness criteria.

• Surprisingly, the best objective function values are the lowest for the "bonds and bills
filtering and the highest for the benchmark filtering.

• For all the types of shapes of yield curve, the benchmark filtering is the most robust of t
three filterings in terms of the percentage of estimated values of the objective functio
within 0.1 per cent of the best value.

Table 20. Robustness: Short-end vs. benchmark

Dates

Average time per local search algorithm
(in seconds)

Total time for global search algorithm
(in hours)

Benchmark Bonds only Bonds and
bills

Benchmark Bonds only Bonds and
bills

Normal 4.1 5.2 4.4 0.44 1.23 0.95

Flat 4.6 4.9 4.9 0.55 1.08 1.09

Inverted 4.5 5.0 5.2 0.66 1.17 0.96

Total 4.4 5.1 4.8 0.55 1.16 1.00

Dates

Best objective function value Percentage of solutions in global search
within 0.01% of best solution

Benchmark Bonds only Bonds and
bills

Benchmark Bonds only Bonds and
bills

Normal 87,755.1 75,149.9 36,369.9 21.6% 13.7% 10.6%

Flat 54,837.2 45,207.7 61,362.5 18.2% 12.7% 8.6%

Inverted 21,432.2 16,857.1 24,700.8 31.3% 22.9% 21.1%

Total 54,674.8 45,738.2 40,811.1 23.7% 16.4% 13.4%
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4.2.3  The “data” decision

At first glance, the results tend to lead towards the use of tighter data filtering. The tig
filtering produces a better fit of the data for flat and inverted curves, at no cost in terms of s
and robustness of the estimations. However, the choice is less obvious if upward-slopin
“normal,” yield curves are considered, where the benchmark case still slightly outperform
tight filtering in terms of goodness of fit. Moreover, the hit ratio statistics suggest that
benchmark filtering generates more estimated YTMs in the actual bid-offer spread. Sinc
process of choosing a threshold value for any filtering criteria is a somewhat arbitrary proces
benchmark filtering is still considered more reliable because it provides similar results w
using more information from the government securities market.

The various criteria suggest that the “bonds only” or “bonds and bills” cases do
provide any clear improvement relative to the benchmark case in terms of goodness of fi
analysis confirms the difficulty of using only the information embedded in short-term bond
estimate the Svensson model. The slower global algorithm convergence times suggest that
of either “bonds only” or “bonds and bills” at the short-end is more difficult. This is supported
the smaller number of solutions in the global search close to the best solution for both “b
only” and “bonds and bills” relative to the benchmark case. It was therefore decided tha
benchmark case seems a better approach. This may be because the sole use of treasury b
short-end, as in the benchmark case, helps anchor the model because these securities a
liquid and homogeneous than the existing bonds in this maturity area.

5. CONCLUDING REMARKS

The objectives of this paper were to introduce a new class of parametric term stru
models to the Bank of Canada and to prepare the framework for the generation of a historica
base of Government of Canada yield curves. To tackle these issues, the problem was divid
two separate components: the estimation and the data aspects. In the analysis of the est
problem, the data filtering criteria were held constant and three separate models—two alte
specifications of the objective function and two global search algorithms—were examined.
of the nine alternatives was measured in terms of goodness of fit, speed of estimation
robustness of the results. The best alternative was determined to be the Svensson model
log-likelihood objective function and the partial-estimation algorithm. This estimation appro
was then used to consider the data problem. To achieve this, three alternative filtering se
were considered: a more severe or “tight” setting and an examination of the use of bonds
treasury bills to model the short-end of the term structure. Once again, the goodness
robustness, and speed of estimation were used to compare these different filtering possibili
the final analysis, it was decided that the benchmark filtering setting offered the best appro
the selection of data for the estimation of the term structure.
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From this work emerges a framework for the development of a historical data base o
mated term structures and an improved understanding of this class of parametric models.
ticular, there are a number of concerns respecting these models that have been resolved
analysis. For example, it is believed that the log-likelihood specification of the objective func
is an efficient approach to solving this problem. In addition, the benchmark data filtering cas
forms well relative to other possible filtering scenarios. Indeed, the parametric class of m
appears to be less sensitive to the data filtering than initially believed. Some questions, ho
remain. The first observation is that the estimation algorithms could be improved. There
concern that the domain of the objective function is not adequately considered when determ
the optimal set of starting parameters. A possible avenue of future research to deal more ap
ately with the high dimensionality of the problem could involve the use of genetic algorith
Finally, although the Svensson model was chosen, there are other functional forms that m
more stable or may better describe the underlying data. These two remaining questions, the
suggest that there are certainly more research questions to be addressed in this area.
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TECHNICAL APPENDIXES

This appendix is divided into four sections:

• Section A:  Basic “yield curve” building blocks

• Section B:  Extracting zero-coupon rates from the par yield curve

• Section C:  Extracting “implied” forward rates from zero-coupon rates

• Section D:  Mechanics of the estimation

• Section E:  Optimization algorithms

A. Basic “yield curve” building blocks1

There are some basic financial concepts that are quite helpful in understanding
structure modelling. Four basic elements in particular appear consistently in the construct
yield curves: zero-coupon rates, discount factors, par yields, and forward interest rates. Th
vation of one of these elements is, conveniently, sufficient for the determination of the other
elements. This section attempts to make clear the links between these elements.

A.1 Zero-coupon rate and discount factors

Each interest rate or bond yield definition is derived from specific representations o
bond price function. If a bond corresponds to a single principal payment to be received at ma
dateT (i.e., it does not pay a coupon), its price function can be defined in terms of the zero-co
interest rateZ(t,T) for that specific maturity(T - t) as follows:2

where in Canada. (A:EQ 1)

The zero-coupon interest rateZ(t,T) is the yield implied by the difference between a zer
coupon bond’s current purchase price and the value it pays at maturity. A given zero-coupo
applies only to a single point in the future and, as such, can only be used to discount cash
occurring on this date. Consequently, there are no embedded assumptions about the invest
intermediate cash flows.

1. See Fabozzi and Fabozzi (1995) as a supplementary reference.

2. An example of this type of instrument is a Government of Canada treasury bill.

Price t T,( ) 100

1 Z t T,( )+( )n
----------------------------------= n T t–( ) 365⁄=
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The zero-coupon rate can also be defined in terms of the discount factor for the c
sponding term to maturity, which is . The main reason for the usage of
discount factor is its relative ease of use and interpretation in comparison to zero-coupon ra
calculate a cash flow’s present value (or the discounted cash flow), one simply takes the pro
this cash flow and the specific discount factor with the corresponding maturity.

The calculation of zero-coupon rates and their related discount factors is particularl
evant for the pricing of coupon bonds. Note that, conceptually, a coupon bond is a portfo
zero-coupon bonds. A bond withN semi-annual coupon payments (C/2) and a term of maturity of
T (or N/2 years) can be priced, using the zero-coupon ratesZ(n)t for each coupon period, from the

following relationship:

. (A:EQ 2)

Thus, the price of a bond is simply the sum of its cash flows (coupons and principal)
counted at the zero-coupon interest rates corresponding to each individual cash flow.

Unfortunately, individual zero-coupon rates prevailing in the market are not observab
all maturities. The only Canadian securities from which zero-coupon rates can be extr
directly are treasury bills that have a maximum term to maturity of one year.3 This implies that
zero-coupon rates for longer maturities must be estimated from other securities (i.e., c
bonds).

A.2 Yield to maturity and the “coupon effect”

For longer maturities, one may observe the prices of Government of Canada bonds,
make semi-annual coupon payments. Bond prices are often summarized by their yield to m
(YTM),which is calculated as follows:

. (A:EQ 3)

The yield to maturity is the “internal rate of return” or IRR on a bond.4 That is, it is the
constant rate that discounts all the bond’s cash flows to obtain the observed price. As a res

3. Note that zero-coupon rates for longer maturities could theoretically be observed using Government of C
bonds that have been stripped into separate coupon and principal components.

4. This calculation is performed with an iterative root-finding algorithm such as Newton-Raphson.

Disc t T,( ) 1 Z t T,( )+( ) n–
=

Price t T C, ,( )

C
2
---- 

 

1 Z n( )t+( )n 2⁄
-------------------------------------- 100

1 Z N( )t+( )N 2⁄
-----------------------------------------+

n 1=

N

∑=

Price T C,( )t

C
2
---- 

 

1 YTM T C,( )t+( )n 2⁄---------------------------------------------------- 100

1 YTM T C,( )t+( )N 2⁄-----------------------------------------------------+
n 1=

N

∑=
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yield to maturity is essentially an average of the various zero-coupon rates, weighted b
timing of their corresponding cash flows. An important, although unrealistic, assumption o
YTM calculation is that all intermediate cash flows are reinvested at the YTM.

The relationship between the YTM for a series of bonds and their term to maturity is
quently used to represent the term structure of interest rates. This is troublesome, given t
size of the coupon will influence the yield-to-maturity measure. In the simplest case of a flat
structure of interest rates, the zero-coupon rate and the yield to maturity will be identic

 then:

(A:EQ 4)

. (A:EQ 5)

Generally, however, the yield curve is not flat and the zero-coupon rates associated
various coupons vary with respect to the timing of the coupon payments.5 Thus two bonds with
identical maturities but different coupons will have different yields to maturity. For exampl
larger coupon places a larger weighting on the earlier zero-coupon rates and thus the yi
maturity calculation will be different from the lower coupon bond. This is called the “coup
effect.”6 It is particularly problematic in instances where the coupon rate differs substant
from the yield-to-maturity value. This is because the zero-coupon rate weightings are
heavily skewed and the coupon effect is correspondingly larger.

Simply plotting the YTM for a selection of bonds would be misleading. Firstly, the YT
measure, which is a complicated average of zero-coupon rates, cannot be used to discount
cash flow. In fact, the YTM cannot be used to price any set of bonds apart from the specific
to which it refers. Secondly, the implicit reinvestment assumption and the coupon effect mak
YTM measure extremely difficult to interpret as a yield curve.

5. In a positively (negatively) sloped yield curve environment, the zero-coupon rate for a given maturity w
higher (lower) than the yield to maturity.

6. More accurately, this section describes the “mathematical” coupon effect. It should be noted that differen
the manner in which capital gains and interest income are taxed also gives rise to what is termed th
induced” coupon effect.

Z m( )t Z n( )t Z N( )t Zt,= m n,( ) 1 2 … N, , ,[ ]∈( ),∀= =

(EQ 2) Price T C,( )t⇔

C
2
---- 

 

1 Zt+( )n 2⁄--------------------------- 100

1 Zt+( )N 2⁄----------------------------+
n 1=

N

∑=

EQ 3( ) Zt YTM T C,( )t=⇒
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A.3 Duration

A concept related to the link between the YTM and prices is the duration of a bond. T
are two commonly used measures of duration.7 The first measure (termed Macauley duration) is
weighted average term to maturity of the present value of the future cash flows of a bond
expressed as follows (whereCF represents cash flow):

. (A:EQ 6)

The second measure of duration (termed the modified duration) is a manipulation o
Macauley duration and represents a linear approximation of the convex relationship betwe
price of a bond and its YTM.8

. (A:EQ 7)

The concept of duration provides a useful method for understanding the relation
between the price and the YTM of a bond. That is, for a given change in a bond’s YTM
change in price will be greater for a longer-term bond than for a shorter-term bond. Dur
attempts to quantify this impact. The asymmetry between bond price and yield changes
important consideration in the modelling of the term structure of interest rates.

A.4 Par yields

To resolve the coupon effect problem in the interpretation of YTM, another represent
of the term structure of interest rates called the par yield curve may be used.9 The par yield for a
specific maturity is a theoretical derivate of the YTMs of existing bonds that share this s
maturity. It is a YTM that a bond would have if it were priced at par. This means the bond’s Y
must be equal to its coupon rate.

7. See Das (1993a).

8. Convexity implies that changes in yield do not create linear changes in price: As YTM rises, the correspo
price falls at a decreasing rate and, conversely, as YTM falls, the price increases at an increasing rate.

9. The par yield curve and related concepts are well presented in Fettig and Lee (1992).

D T C,( )t

CFt t⋅( )

1 YTM T C,( )t+( )t
----------------------------------------------

t 1=

n

∑

CFt( )

1 YTM T C,( )t+( )t
----------------------------------------------

t 1=

n

∑
------------------------------------------------------------=

DModified

D T C,( )

1
YTM

2
------------ 
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+
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Since Government of Canada bonds are rarely priced at par in the secondary marke
yields must be estimated from existing bonds’ YTMs. It should be noted that a par yield
single bond cannot be calculated (unless, of course, it is currently trading at par). Inste
sample of bonds must be used to estimate these hypothetical par yields. Given that the coup
is equal to the par yield to maturity (PAR(t,T)) and the price by definition is at par (i.e., 100), the
the price function of a bond can be rewritten as follows:

. (A:EQ 8)

A model is required to estimate the par yields that satisfy this equation while simult
ously optimizing the fit with the observed YTMs.10 A par yield is still a YTM measure. This
implies that it has the same characteristics as the YTM: It is a weighted average of zero-c
rates and assumes all intermediate cash flows are reinvested at the YTM (or par yield).

B. Extracting zero-coupon rates from the par yield curve

One technique used to derive zero-coupon rates from a par yield curve is“ bootstrapping.”
This technique is a recursive method that divides the theoretical par yield bond into its cash
and values each independent cash flow as a separate zero-coupon bond.

The method is based on the basic bond pricing formula. By definition, all theoretica
bonds trade with a coupon equal to the YTM and a price equal to $100 (or par). To obtain
par yields, a previously calculated par yield curve is used. The 6-month zero-coupon r
simply the following, wherePAR(n)t and Z(n)t are then-year par yield and zero-coupon rat

respectively. In this expression, the 6-month zero-coupon rate is the only unknown variabl
can therefore be uniquely determined.

(A:EQ 9)

10. The Super-Bell model is an example of an approach to estimate par yields.

100

PAR t T,( )
2

------------------------- 
  100⋅

1 Zt n( )+( )n 2⁄
-------------------------------------------- 100

1 Zt N( )+( )N 2⁄
-----------------------------------------+

n 1=

N

∑=

100

1
2
--- PAR 0.5( )t 100⋅( ) 100+

1 Z 0.5( )t+( )0.5
---------------------------------------------------------------=
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Given the 6-month zero-coupon rate, one may proceed to determine the 1-year r
follows whereZ(0.5)t is known and one solves forZ(1)t.

. (A:EQ 10)

As indicated, this method iterates through each subsequent maturity until zero-co
values are determined for term to maturities from 0.5 to 30 years. The following box provides
period numerical example for annual zero-coupon rates.11

11. See Das (1993b) for a more detailed example of the bootstrapping technique.

100

1
2
--- PAR 1( )t 100⋅( )

1 Z 0.5( )t+( )0.5
-------------------------------------------

1
2
--- PAR 1( )t 100⋅( ) 100+

1 Z 1( )t+( )1
-----------------------------------------------------------+=

time = 1 time = 2

The 1-period zero-coupon rate is equivalent to the 1-period par yield from the

time = 3 time = 4

, where Z(3) = 7.10%100 7

1.05( )1
------------------ 7

1.0603( )2
------------------------ 100 7+

1 Z 3( )+( )
3

------------------------------+ +=

, where Z(4) = 8.22%100 8

1.05( )1
------------------ 8

1.0603( )2
------------------------ 8

1.0710( )3
------------------------ 100 8+

1 Z 4)( )+( )
4

----------------------------------+ + +=

, where Z(2) = 6.03%100 6

1.05( )1
------------------ 100 6+

1 Z 2( )+( )
2

------------------------------+=

par (1) = 5% par (2) = 6% par (3) = 7% par (4) = 8%

A 2-period  par
bond has a
coupon of 6%.

A 3-period  par
bond has a
coupon of 7%.

A 4-period  par
bond has a
coupon of 8%.

, therefore Z(1) = 5.00%100 105

1 Z 1( )+( )1
-----------------------------=

following expression:

A 1-period  par
bond has a
coupon of 5%.

Properties of par bonds

Inputs to “Bootstrapping”

Using the price function of each individual par bond (1 to n periods), it is possible
to determine the subsequent zero-coupon rates. To reduce this price function to
a single unknown (the zero-coupon rate desired), the previously calculated zero
coupon rates are used.

Diagram 1: “Bootstrapping” of zero-coupon rates
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It is important to note that the “bootstrapped” zero-coupon curve will have zero-cou
rates for discrete maturities. The intermediate zero-coupon rates are typically determin
linear interpolation between the discrete maturities.

C. Extracting “implied” forward rates from zero-coupon rates

A forward rate is the rate of interest from one period in the future to another period in
future. It is, for example, the rate one would pay (earn) to borrow (lend) money in one year w
maturity in two years. Forward interest rates (like zero-coupon rates) are typically not dir
observable and, as a result, they must be derived from the zero-coupon curve; hence th
“implied” forward rates.

The implied forward rates are derived from zero-coupon rates from an arbitrage argu
Specifically, forward borrowing or lending transactions can be replicated with the approp
spot transactions. A forward contract, from timeτ to T, can be replicated at no cost by borrowin
from timet to T and lending the proceeds fromt to τ (with t < τ < T). The result is a cash receipt a
timeτ and an obligation to pay at timeT, with the implied rate between periodτ andT equal to the
forward rate. The following general expression summarizes this argument algebraically:

. (A:EQ 11)

The following box provides a 2-period numerical example of the calculation of imp
forward rates:

F t τ T, ,( ) 1 Z t T,( )+( ) T t–( ) 365⁄

1 Z t τ,( )+( ) τ t–( ) 365⁄
-------------------------------------------------------------

365
T τ–
------------

1–=

time = 0 time = 1 time = 2

Borrow $100 until
Pay $112.36
$100 x (1.06)2

Invest $100 until

Receive $105
$100 x (1.05)1

The implied forward rate is 7.01%
You have borrowed $105 and will repay $112.36
($112.36- $105) / $105 = 0.0701.

time = 2 at 6%

time = 1 at 5%

Z(1) = 5% Z(2) = 6%

Diagram 2: Calculation of “implied” forward rates



46

bed in
ompo-
anical
native
cting
con-
n are

upon
lected
bond
(date
theo-
the

iscount
dis-

ent-
unted
bond

he dis-
t of
D. Mechanics of the estimation

The estimation of Nelson-Siegel or the Svensson model parameters is briefly descri
Figure 2 on page 10 of the text. This appendix provides additional detail on the separate c
nents of the estimation, which can be conceptually divided into three parts: the basic mech
steps required to generate theoretical bond prices (points C and D of Figure 2); the alter
specifications of the objective function (point F of Figure 2); and finally, the specifics respe
the optimization algorithms (represented in point F of Figure 2). The mechanics of the
struction of theoretical bond prices and the alternative formulations of the objective functio
described in this section while the optimization strategies are outlined in Section E.

D.1 Construction of theoretical bond prices

The price of a bond is equal to the sum of the discounted values of its cash flows (co
payments and principal). Therefore, to generate the vector of theoretical bond prices for se
Canadian bonds and bills, a matrix of coupon and principal payments of bonds (matrix of
cash flows) is built and a matrix of the corresponding coupon and principal payment dates
matrix) is also constructed. Using the date matrix and the Nelson-Siegel or the Svensson
retical discount function, a matrix of discount factors (discount matrix) is created relating to
specific interest and coupon payment dates. The Nelson-Siegel and the Svensson d
matrices differ only in the functional form of the forward rate curve functions used for the
count function applied.

The discount matrix and the matrix of bond cash flows are then multiplied in an elem
by-element fashion to obtain a matrix of discounted coupon and principal payments (disco
payment matrix). As a final step, the Nelson-Siegel or the Svensson vector of theoretical
prices is obtained by summing all the discounted payments corresponding to each bond in t
counted payment matrix. This process is outlined in the following diagram. For any se
Svensson parameters, the resulting vector of theoretical bond prices can be calculated.
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D.2  Log-likelihood objective function

This name for the objective function is somewhat of a misnomer because maximum
lihood estimation is not actually used. An objective function inspired by a log-likelihood func
is derived but there is no particular concern with the distribution of the error terms. What is so
instead is a method that incorporates the information in the bid-offer spread—in particula
generation of an additional penalty for errors (measured from the mid-price) that fall outsid
bid-offer spread.

The vector of bond prices is a function ofX, described as the matrix of inputs (whic
includes the cash flow amount and dates), and the vector of term structure parameters. The

of errors, , is defined as the difference between the mid-price ( ) and

estimated price multiplied by a weight matrix (where is a diagonal matrix with

weight vector as the elements along the main diagonal) as follows:12

, where (A:EQ 12)

12.  is defined as the mid-price,  as the bid-price, and  as the offer-price.

Matrix of bond cash flows:
Date matrix: a matrix of the

Discount matrix: a matrix of

Discounted payment matrix: a matrix

a matrix of all the coupon
and principal payments

specific dates for all coupon
and principal payments

Discount rate function

discount factors relating to each
coupon and principal payment
date

of all the discounted coupon and
principal payments

Vector of theoretical bond prices:
the horizontal sum of each row in
the discounted payment matrix

Diagram 3: Steps in calculating the theoretical price vector

A discount rate is
determined for each
coupon and interest
payment date.

Element-by-element
multiplication of the
payment and discount
matrix produces the discounted
payment matrix.

disc TT Mt βo β1 β2 β3 τ1 τ2,,,,,( )

e PM PO
PB PO–

2
------------------- 

 +=

diag ω( )

PM PB PO

e diag ω( ) PM f X β,( )–[ ]⋅= β β0…βn τ1…τn,{ }=
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The key assumption of maximum likelihood estimation is the assumption that the e

are normally distributed with a zero mean and a variance of . This can be expressed as fo

. (A:EQ 13)

Instead, however, of having a specified constant variance for the errors, there is a u

variance for each observation as one-half of the bid-offer spread or . T

therefore, transforms the likelihood function into the following:13

, where (A:EQ 14)

The final step is to derive the log-likelihood function and apply the appropriate weig
Therefore, in the optimization algorithms, it is desired to maximize the following objec
function:

. (A:EQ 15)

D.3  Sum of squared errors with penalty parameter objective function

The second objective function used in the estimation of the model is somewhat
straightforward as it represents a special case of simple sum of squared errors objective fu
Again, the goal is to penalize to a greater extent those errors that fall outside of the bid
spread while maintaining a continuous objective function.

Recall from the previous section (see equation 12) that the vector of bond prices
function of a matrix of inputs and a vector of parameters. In the simple case, the error is defin
the same way as in the previous section, that is:

(A:EQ 16)

The transformation is to multiply the price error by two and divide it by the bid-of

spread ( ) and raise this quotient to the power of , which can be considered

13. Note that in the likelihood function is set to one. As a result, the likelihood function will differ by a cons
from a more general presentation.

σ2

e N 0 σ2
I,( )∼

σbo
1
2
--- PB PO–( )=

σ2

l β σ2
Price X,,( ) 2π( )

N
2
----–

Ω
1
2
---–

e

eTΩ 1– e( )
2

----------------------–

= Ω diag σbo( )[ ]
2

=

L β σ2
Price X,,( ) N

2
---- 2π( ) 1

2
--- Ωln– e

TΩ 1–
e

2
------------------–ln–=

e PM f X β,( )–[ ]=
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penalty parameter (where and are diagonal matrices with and as the

ments along the main diagonals respectively). This expression is defined as follows:

, where . (A:EQ 17)

It can be seen that, if the error term in the numerator and the bid-offer spread in
denominator are the same, the value will be one and the exponent will not change its valu
scaling of the error term in the numerator by a factor of two is intended to make this possib
the error term is less than the bid-offer spread, the value of the expression will be less tha
and the exponent will reduce its value, which will correspondingly have less impact in the
mation. Finally, should the error term exceed the bid-offer spread, then the exponent will inc
the size of the expression and increase its influence on the estimation. It is worth noting th

this paper’s estimations, the penalty parameter was maintained at a fairly arbitrary value o

It would be possible to increase the penalty for falling outside the bid-offer spread by incre
the size of the penalty parameter. Thus, the sum of squared errors with a penalty para
objective function is formally expressed as follows:

. (A:EQ 18)

E. Optimization algorithms

To minimize the weighted sum of the absolute value of price errors, a constrained
linear optimization procedure is used. The constraints enhance the speed of the algorith
avoid “strange” local optima, which are not economically feasible in the Canadian yield c
environment.14 The specific constraints imposed on the parameter values for both models a
follows:15

• Parameters: , , , ,

• Relative values:

This is both a discussion and a demonstration of the challenges of determining the para
values for the parameter models. The two alternative global optimization algorithms that
designed to deal with this problem are discussed in the following sections.

14. These constraints are practically derived and thus do not come from any economic theory. For example, thτs are
constrained to the range of Government of Canada bond maturities while theβs are restricted to values tha
provide reasonable shapes for the resulting zero-coupon and forward curves.

15. The constraints on coefficientsβ3 andτ2, however, only apply to the Svensson model.

diag e( ) diag S( ) e S

ψ( )λ ψ 2diag e( ) diag S( )
1–

⋅=

λ

g β Price X,( ) ωT Ψ( )
λ

ω=

0 β0 25< < 20– β1 20< < 25– β2 25< < 25– β3 25< < 1
12
------ τ1 30< < 1

12
------ τ2 30< <

0 β0 β1+<
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E.1  Full-estimation algorithm

This global search algorithm begins with the construction of a matrix of star

parameter values ( ), runs a local search for each parameter set ( ), and

then selects the best solution. Conceptually, what is sought is to partition the parameter spa

run a local search in each subregion. The dimensionality of the problem, however, make

practically impossible or, rather, prohibitively time consuming. Therefore, there is an attem

simplify the grid by making some assumptions about the possible starting values for theβ0 andβ1

parameters. In both the Nelson-Siegel and Svensson models, theβ0 and β1 parameters are not

varied but instead set to “educated guesses” for their values.16 It is important to note, however,

that for each set of starting parameters, the entire parameter set is estimated. Theβ0 starting value,

which is the asymptote of the instantaneous forward rate function, is set to the YTM of the

with the longest term to maturity in the data sample (i.e., the most recently issued 30-year b

It is also noted that, given that the sum ofβ0 andβ1 is the vertical intercept of the instantaneou

forward rate function, the starting value ofβ1 is set to the difference between the longest a

shortest YTM in the data set (i.e., the most recently issued 30-year bond YTM less 30

treasury bill rate).

Thus, the previously described values forβ0 andβ1 and combinations of different values

for the remaining parameters are used to construct the matrix of starting values. In the N

Siegel model, nine combinations of the remaining two parameters (β2 andτ1) are used in the grid

for a total of 81 ( ) sets of starting parameters. In the Svensson model, four combinations o

parameters (β2, β3, τ1, τ2) are used for a total of 256 ( ) different sets of starting values. The g

used to estimate the Nelson-Siegel model is much finer than that used for the Svensson

This is shown by the more robust nature of the results for the Nelson-Siegel model in the t

the paper. The selection of the number of different combinations of starting values appears

arbitrary although it is really a function of the time constraint. Note that five combinations o

varied parameter set (β2, β3, τ1, τ2) instead of four combinations for the Svensson model amo

to 1,296 ( ) different sets of starting values. This would require approximately five times lo

to estimate than the more-than-three hours already required.

Two alternative local search algorithms are used to solve for each row in the matr
starting values: sequential quadratic programming (SQP) and the Nelder and Mead Si
method. Sequential quadratic programming uses local gradient information to determin

16. Ricart and Sicsic (1995) use these as constraints in their estimation. The ideas are used in this paper
constraining the parameters.

Si j, β β0…βn τ1…τn,{ }=

9
2

4
4

6
4
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direction of movement of the algorithm over the objective function; the Simplex method us
series of direct function evaluations to determine the direction of descent.17 The reason for two
alternative approaches is the difficulties in the estimation of the full model. On occasion, the
algorithm fails to converge. To solve this problem, it was decided to limit the time permitted
each SQP local search. On failure to converge before a specified period of time (two minut
would be replaced with the more reliable although less accurate Simplex algorithm with w
there had been no convergence problems.18 Figure 1 provides a simple flow chart of the steps
the full-estimation algorithm for the Svensson model (the logic of the Nelson-Siegel mod
identical).

Figure 1. A flow chart of the “Svensson model” full-estimation algorithm

E.2  Partial-estimation algorithm

This global search algorithm divides the parameters into two groups, theβs (or linear
parameters) and theτs (or the non-linear parameters). It works in a number of steps where
group of parameters is fixed while the other is estimated. The advantages of estimating one
of the parameters while holding the other constant are improved speed of convergenc
increased stability. Indeed, unlike the full-estimation algorithm discussed in the previous se

17. See C. F. Garvin, “Introduction to Algorithms,” inFinancial Toolbox: For Use with MATLAB(Natick, Mass.:
MathWorks, 1996) for a good discussion of the SQP algorithm, and Nelder and Mead (1965) for the or
description of the surprisingly straightforward Simplex algorithm.

18. Two minutes was chosen as the cut-off for the SQP algorithm through a process of trial and error.

Matrix, S, of 256
different sets of
starting values
( ).S256 6,

Select row i of the matrix
and run the SQP local

search algorithm ( ).Si 6,

Does it converge
within 2 minutes?

YES NO

Run the Simplex
local search
algorithm.

Save results and run the next row

of the starting value matrix ( ).Si 1 6,+

From the 256 different
sets of starting values, the
best solution is selected.
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each step of the partial-estimation algorithm was estimated using the SQP algorithm exclu
and no convergence problems were encountered.

Whenever certain sets of parameters are fixed, there is a concern that the solution is
constrained from its optimum. The partial estimations were performed in two separate strea
an attempt to mitigate this concern. The first stream fixes theτ parameters while estimating theβs,
and then proceeds to fix theβs and estimate theτs. The second stream proceeds in reve
fashion: It fixes theβs and estimates theτs, and subsequently fixes theτs and estimates theβs.
Each step of both streams uses the best solution or, rather, set of estimated parameters f
previous step. Specifically, a new matrix of starting parameters is then built around these
mated parameters to perform a new round of partial estimations. Note that, in each new ma
starting parameters, only those parameters that are fixed in that round of estimation are
while the estimated parameters use the previous step’s estimated parameters as starting
Upon completion of both streams, all the estimations performed (both partial and full) are s
by the value of their objective function and the best solution is selected. The two main str
(termed Step 1 and Step 2) are outlined in Figure 2.

Note that both estimation streams begin with a relatively coarse matrix of starting pa
eters; that is, using a wide range of values for both the fixed and the estimated parameter
allows, in subsequent steps, the estimation of the parameters that were fixed in the first ste
a narrower grid. It thereby permits the analysis to be focused around the best estimated
obtained in the first step. The estimation of all the parameters can therefore be performed
final step for a small number of starting parameters.
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Figure 2. A flow chart of “Svensson model” partial-estimation algorithm

• Construct matrix of starting

values, . Vary the τs for a total

of 81 rows ( ).

S
β̃ τ,

9
2

• Estimate, using each row of this
starting-value matrix.

• Select the 4 best solutions of all
the estimations (from either step)
and estimate the full model.

τs fixed and βs estimated

• Select 3 best solutions.
Construct starting-value matrices
around each solution (25 rows in
each).

• Estimate, using each row of
these starting-value matrices.

STEP 1.0

• Construct a new matrix of

starting values, . Vary the βs

for a total of 81 rows ( ).

Sβ τ̃,

3
4

• Estimate, using each row of this
starting-value matrix.

• Select the 2 best solutions.
Construct starting-value matrices
around each solution (25 rows in
each).

• Estimate, using each row of
these starting-value matrices.

STEP 1.1

• Construct matrix of starting

values, . Vary β1, β2, and β3

for a total of 147 rows ( ).

Sβ τ̃,

3
1

2
7⋅

• Estimate, using each row of
starting-value matrix.

• Select the 4 best solutions of all
the estimations (from either step)
and estimate the full model.

• Select 2 best solutions.
Construct starting-value matrices
around each solution (81 rows in
each).

• Estimate, using each row of
these starting-value matrices.

STEP 2.0

• Construct a new matrix of

starting values, . Vary the βs

for a total of 81 rows ( ).

Sβ τ̃,

3
4

• Estimate, using each row of this
starting-value matrix.

• Select 2 best solutions.
Construct starting-value matrices
around each solution (81 rows in
each).

• Estimate, using each row of
these starting value matrices.

STEP 2.1

STEP 1.2 STEP 2.2

Select the best solution from among all the
estimations in steps 1 and 2.

STEP 1
τs estimated and βs fixed.

STEP 2
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	18.4
	Total
	12.5
	12.5
	11.5
	11.6
	12.5
	12.5
	11.5
	11.6
	15.0
	Table 7. Hit ratio (estimated yield inside bid-offer spread/total bonds)

	Normal
	9.7%
	9.7%
	11.5%
	11.5%
	9.7%
	9.7%
	11.4%
	11.5%
	6.9%
	Flat
	4.3%
	4.3%
	3.4%
	3.2%
	4.3%
	4.2%
	3.7%
	3.5%
	3.8%
	Inverted
	5.0%
	5.0%
	3.8%
	4.1%
	5.0%
	5.0%
	4.0%
	4.2%
	2.1%
	Total
	6.3%
	6.3%
	6.3%
	6.3%
	6.3%
	6.3%
	6.3%
	6.4%
	4.3%
	Table 8. Percentage of bonds with estimated yields exceeding the bid

	Normal
	47.0%
	47.0%
	50.0%
	48.4%
	47.0%
	47.0%
	50.2%
	48.7%
	55.8%
	Flat
	47.5%
	47.5%
	46.5%
	46.9%
	47.5%
	47.9%
	46.6%
	47.0%
	52.5%
	Inverted
	56.3%
	56.3%
	53.2%
	53.5%
	56.3%
	56.3%
	53.2%
	53.7%
	60.8%
	Total
	50.3%
	50.3%
	50.0%
	49.6%
	50.3%
	50.4%
	50.0%
	49.8%
	56.4%
	Table 9. Percentage of bonds with estimated yields below the offer

	Normal
	53.0%
	53.0%
	50.0%
	51.6%
	53.0%
	53.0%
	49.8%
	51.3%
	44.2%
	Flat
	52.5%
	52.5%
	53.5%
	53.1%
	52.5%
	52.1%
	53.4%
	53.0%
	47.5%
	Inverted
	43.7%
	43.7%
	46.8%
	46.5%
	43.7%
	43.7%
	46.8%
	46.3%
	39.2%
	Total
	49.7%
	49.7%
	50.0%
	50.4%
	49.7%
	49.6%
	50.0%
	50.2%
	43.6%
	4.1.3 Speed of estimation
	Table 10. Average time per local search algorithm (in seconds)


	Normal
	11.3
	1.7
	47.5
	4.1
	11.5
	1.6
	48.5
	4.4
	0.5
	Flat
	10.7
	2.0
	49.0
	4.6
	11.1
	2.2
	50.3
	6.2
	0.5
	Inverted
	13.9
	2.1
	46.3
	4.5
	14.2
	2.2
	47.3
	4.6
	0.5
	Total
	12.0
	1.9
	47.6
	4.4
	12.3
	2.0
	48.7
	5.1
	0.5
	Table 11. Total time for global search algorithm (in hours)

	Normal
	0.25
	0.17
	3.20
	0.44
	0.26
	0.18
	3.27
	0.60
	0.00013
	Flat
	0.24
	0.37
	3.31
	0.54
	0.25
	0.30
	3.40
	0.88
	0.00013
	Inverted
	0.31
	0.47
	3.13
	0.66
	0.32
	0.43
	3.20
	0.71
	0.00013
	Total
	0.27
	0.33
	3.21
	0.55
	0.28
	0.30
	3.29
	0.73
	0.00013
	4.1.4 The “estimation” decision
	4.2 The “data problem”
	Figure 6. The analysis of the “data problem”
	Table 12. Number of observations used in estimation (unfiltered observations)


	Normal
	52.3
	61.2
	56.2
	26.2
	Flat
	74.5
	94.2
	89.2
	56.5
	Inverted
	83.3
	101.7
	97.2
	65.5
	Total
	70.0
	85.7
	80.9
	49.4
	4.2.1 Tightness of data filtering
	Table 13. Filter settings: “Tight” case


	Minimum amount outstanding
	Can$2,500 million
	Can$500 million
	Divergence from par: | Coupon - YTM |
	250 basis points
	500 basis points
	Inclusion of treasury bills
	Yes
	Yes
	Inclusion of bonds with less than 2 years TTM
	No
	No
	Table 14. Goodness of fit: “Tight” vs. benchmark

	Normal
	6.5
	6.9
	5.0
	5.4
	11.5%
	11.9%
	Flat
	25.0
	19.6
	16.8
	13.7
	3.2%
	3.1%
	Inverted
	18.5
	15.8
	13.1
	11.7
	4.1%
	5.4%
	Total
	16.7
	14.1
	11.6
	10.2
	6.3%
	6.8%
	Table 15. Speed of estimation: “Tight” vs. benchmark

	Normal
	4.1
	4.1
	0.44
	0.44
	Flat
	4.6
	4.8
	0.55
	0.67
	Inverted
	4.5
	4.5
	0.66
	0.60
	Total
	4.4
	4.5
	0.55
	0.57
	Table 16. Robustness: “Tight” vs. benchmark

	Normal
	87,755.1
	87,732.9
	21.6%
	20.2%
	Flat
	54,837.2
	49,560.0
	18.2%
	17.9%
	Inverted
	21,432.2
	20,352.3
	31.3%
	31.9%
	Total
	54,674.8
	52,548.4
	23.7%
	23.3%
	4.2.2 Data filtering at the short-end of the term structure
	Table 17. Filter settings: “Bonds only” and “bonds and bills”


	Minimum amount outstanding
	Can$500 million
	Can$500 million
	Can$500 million
	Divergence from par: | Coupon - YTM |
	500 basis points
	500 basis points
	500 basis points
	Inclusion of treasury bills
	No
	Yes
	Yes
	Inclusion of bonds with less than 2 years TTM
	Yes
	Yes
	No
	Table 18. Goodness of fit: Short-end vs. benchmark

	Normal
	6.5
	6.8
	6.4
	5.0
	5.3
	4.8
	11.5%
	14.4%
	14.0%
	Flat
	25.0
	28.5
	27.3
	16.8
	15.8
	15.2
	3.2%
	7.8%
	5.9%
	Inverted
	18.5
	19.8
	17.2
	13.1
	13.9
	13.0
	4.1%
	6.0%
	5.0%
	Total
	16.7
	18.4
	17.0
	11.6
	11.7
	11.0
	6.3%
	9.4%
	8.3%
	Table 19. Speed of estimation: Short-end vs. benchmark

	Normal
	4.1
	5.2
	4.4
	0.44
	1.23
	0.95
	Flat
	4.6
	4.9
	4.9
	0.55
	1.08
	1.09
	Inverted
	4.5
	5.0
	5.2
	0.66
	1.17
	0.96
	Total
	4.4
	5.1
	4.8
	0.55
	1.16
	1.00
	Table 20. Robustness: Short-end vs. benchmark

	Normal
	87,755.1
	75,149.9
	36,369.9
	21.6%
	13.7%
	10.6%
	Flat
	54,837.2
	45,207.7
	61,362.5
	18.2%
	12.7%
	8.6%
	Inverted
	21,432.2
	16,857.1
	24,700.8
	31.3%
	22.9%
	21.1%
	Total
	54,674.8
	45,738.2
	40,811.1
	23.7%
	16.4%
	13.4%
	4.2.3 The “data” decision
	5. CONCLUDING REMARKS
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