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Estimating the Interest Rate Term Structure of Corporate Debt

with a Semiparametric Penalized Spline Model

Robert Jarrow, David Ruppert, and Yan Yu ∗

Abstract

This paper provides a new methodology for estimating the term structure of corporate debt

using a semiparametric penalized spline model. The method is applied to a case study of AT&T

bonds. Typically, very little data is available on individual corporate bond prices, too little to

find a nonparametric estimate of term structure from these bonds alone. This problem is solved

by “borrowing strength” from Treasury bond data. More specifically, we combine a nonpara-

metric model for the term structure of Treasury bonds with a parametric component for the

credit spread. Our methodology generalizes the work of Fisher, Nychka, and Zervos (1995) in

several ways. First, their model was developed for only Treasury bonds and cannot be applied

directly to corporate bonds. Second, we more fully investigate the problem of choosing the

smoothing parameter, a problem that is complicated because the forward rate is the derivative

− log{D(t)}, where the discount function D is the function fit to the data. In our case study

estimation of the derivative requires substantially more smoothing than selected by generalized

cross-validation (GCV). Another problem for smoothing parameter selection is possible corre-

lations of the errors. We compare three methods of choosing the penalty parameter: linearized

GCV, the residual spatial autocorrelation (RSA) method of Ellner and Seifu (2002), and a modi-

fication of Ruppert’s (1997) EBBS. Third, we provide approximate sampling distributions based

on both large-sample and small-noise asymptotics. The latter are novel and are motivated by

the application to corporate bond prices where the sample sizes are small but the noise is very

low. Confidence bands and tests of interesting hypotheses, e.g., about the functional form of

the spreads, are also discussed.

Key Words: Credit Spreads; EBBS; Forward Rate; GCV; Roughness Penalty; Small-sample

asymptotics, Treasury Bonds.
∗Robert Jarrow is R. P. and S. E. Lynch Professor of Investment Management, Johnson Graduate School of

Business, Cornell University, Ithaca, NY, 14853; David Ruppert is Andrew Schultz, Jr., Professor of Engineer-
ing, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, 14853, email:
davidr@orie.cornell.edu; and Yan Yu is Assistant Professor of Quantitative Analysis and Operations Management at
the University of Cincinnati, PO BOX 210130, Cincinnati, OH, 45221, email: yuy@statqa.cba.uc.edu.

1



1 Introduction

This paper contains a case study in statistical finance as well as several methodological innovations

that also should be of interest in other areas of statistics. In particular, we suggest a new method

of choosing the smoothing parameter when estimating a derivative of a regression function using

a spline. (In this paper we discuss mathematical derivatives as well as financial derivatives. The

meaning should be clear from the context.)

The prices of bonds determine an implied interest rate. Consider a zero-coupon bond paying no

interest or principal until maturity, then paying a fixed amount called the par. Suppose that P (t)

is the current price, as a fraction of par, of a zero-coupon bond maturing in t years. This price is

consistent with a fixed continuous-compounding “forward” interest rate f such that

P (t) = exp(−ft). (1)

Figure 1(a) shows typical price data for a zero coupon bond. There are maturities from 0 to 30

years, spaced nearly quarterly. The rough exponential decay may appear consistent with (1), but

here, and in general, there is no single fixed rate f that prices correctly for all t. To appreciate

this, one can look at Figure 1(b). The “empirical forward” rate in that figure is ∆{− log(P )}/∆t,

where ∆{− log(P )} is the differenced series of negative log prices and ∆t is the differenced series

of maturities. The EBBS and GCV estimates of the forward rate in that figure are explained

below. The key point is that the difference quotients exhibit both random variation and systematic

deviation from a constant rate. However, bond prices are also consistent with a variable interest

rate f(t) such that

P (t) = exp
{
−

∫ t

0
f(s)ds

}
. (2)

One can find a single smooth rate function f(t), called the forward rate, for which (2) holds for

all t, except possibly for some small errors. The financial significance of f(t) is that it is the rate

one can lock in today for future borrowing or lending at time t. The errors can be attributed to

staleness of the price data; the price of a bond of a given maturity was determined at the time of

the last trade, so the prices are not exactly concurrent.

The dependence of f(t) on t is called the term structure. The term structure can only be

inferred from observable bond prices. Although the literature studying the estimation of Treasury

term structure is voluminous (see McCulloch 1971, Vasicek and Fong 1982, Shea 1984, Chambers,

Carleton and Waldman 1984, Adams and Van Deventer 1994, and Fisher, Nychka and Zervos 1995),

the literature studying corporate term structure estimation is almost non-existent (see Schwartz
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1998 and references therein). The problem is that for any individual corporation, there are bond

prices at only a few maturities so determination of f(t) for all t is challenging. This appears to be

the first paper to estimate the term structure for individual corporate bonds.

There are many reasons why estimation of f is of interest. Suppose one were offering to buy or

to sell a bond of a maturity not traded recently. Estimation of f allows one to interpolate prices

from other maturities and determine such a “fair” price.

There are other more complex and interesting applications of the term structure. Corporate

bonds are a classical example of an instrument bearing credit risk, the risk that an agent fails to

fulfill contractual obligations. Increased trading in instruments subject to credit risk has led to

the creation of credit derivatives, instruments that partially or fully offset the credit risk of a deal.

Given the recent explosive growth in the market for credit derivatives (see Risk Magazine, 2002)

and the regulatory-induced need to account for credit risk in the determination of equity capital

(net worth of a business raised from owners), e.g., Jarrow and Turnbull (2000), the estimation of

corporate term structures has become of paramount interest. To put this in perspective, the size of

the credit derivatives market in 2001 (as measured in notional amounts outstanding) was estimated

to be 835.5 billion dollars.

The most traded credit derivatives include default swaps, credit spread options, credit linked

notes, and collateralized default obligations (CDOs). For example, a credit call (put) option gives

its owner the right to buy (sell) a credit-risky asset at a predetermined price, regardless of credit

events which may occur before expiration of the option. A full treatment of credit derivatives

can be found in Bielecki and Rutkowski (2002). The primary inputs to pricing models for these

credit derivatives are the corporate term structures (see Jarrow and Turnbull 1995, Duffie and

Singleton 1999, Bielecki and Rutkowski 2002). These term structures can also be used to infer the

market’s assessment of credit quality for related uses in risk management procedures (see Jarrow

2001). Credit quality assessment is essential for value at risk (VaR) (Dowd, 1998; Jorion, 2000)

computations, bond portfolio management, corporate loan considerations, and even FDIC insurance

premium calculations (see FDIC 2000).

In the estimation of the Treasury term structure hundreds of bond prices are normally available

on any given month, but for corporate term structures only a handful usually exist. (This problem

is observed in the Fixed Income data base, Warga 1995.) Consequently, corporate bonds require

special estimation procedures.

Fisher, Nychka and Zervos’s (1995) (F-N-Z) penalized spline model is non-parametric and as
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such it requires numerous bond price observations. The F-N-Z model applies to Treasury bonds

where prices at many maturities are available on any date, but it is problematic when applied

directly to corporate debt. We generalize the F-N-Z model to corporate debt by modeling the

corporate term structure as a Treasury term structure plus a parametric credit spread. The credit

spread is the extra interest investors demand to buy risky and less liquid corporate bonds instead

of Treasury bonds. For the Treasury term structure, we use F-N-Z’s non-parametric model. We

find that a credit spread that is constant in time, thus requiring only a single parameter, fits our

data well. In other situations, a spread that is linear in time might be used.

We extend F-N-Z’s work by: (i) providing a comparison of F-N-Z’s linearized generalized cross

validation (GCV), Ruppert’s (1997) EBBS method, and Ellner and Seifu’s (2002) residual spatial

autocorrelation (RSA) method for choosing penalty parameters, (ii) deriving asymptotic sampling

distributions for the term structure estimates which, enable us (iii) to compute confidence bands

for the term structure estimates. We also introduce “low noise” asymptotics that justify linearizing

a nonlinear regression model even when the sample size is small; this theory is motivated by the

application to corporate bonds where the sample size might be as small as 5 but the noise is quite

low.

The term structure of interest rates can be identified by any of the discount function, yield

curve, forward rate curve, or the definite integral of the forward rate, each of which determines the

others. The forward curve has already been discussed. The discount function, D(t), gives the price

of a zero coupon bond that pays one dollar at maturity time t, so that D(t) = P (t) is given by

(2). The yield curve, y(t), is the average of f(s) between 0 and t: y(t) = t−1
∫ t
0 f(s)ds. The definite

integral of f is F (t) = ty(t). The relationships among these functions are:

P (t) = D(t) = exp{−F (t)} = exp {−ty(t)} = exp
{
−

∫ t

0
f(s)ds

}
. (3)

Each of f , D, F , and y depends on two time parameters, the current time and maturity, but current

time is considered fixed at 0 and not included in the notation.

Equation (3) holds only for zero-coupon bonds, but many bonds including the AT&T bonds in

our case study have coupons. To price a coupon bond, we can view that coupon as a bundle of

zero-coupon bonds, one for each payment. Payments can be priced by (3) and then summed.

Let P1, · · · , Pn denote the current (time 0) observed market prices of n bonds from which the

interest rate term structure is to be inferred. Bond i, i = 1, · · · , n, has zi fixed payments Ci(ti,j)

due on dates ti,j , j = 1, ..., zi. The payment, Ci(ti,j), consists of coupons and principal at maturity
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ti,zi . The model price for the ith coupon bond is

P̂i =
zi∑

j=1

Ci(ti,j)D(ti,j) =
zi∑

j=1

Ci(ti,j) exp {−ti,jy(ti,j)} =
zi∑

j=1

Ci(ti,j) exp
{
−

∫ ti,j

0
f(s)ds

}
. (4)

Should one use a spline model for the forward rate f or for some other function such as D(t)?

F-N-Z consider spline modeling of f , F , and D and conclude that modeling f results in the most

accurate estimation. If D is modeled as a spline, then the model is linear in the spline coefficients,

which is obviously attractive. However, there are advantages to modeling f itself as a spline. The

constraint that a dollar paid today is worth a dollar, i.e., that D(0) = 1, is then embedded in this

model. In contrast, when fitting splines to D or F , the constraint D(0) = 1 or F (0) = 0 must be

imposed. Also, Shea (1984) noticed serious problems fitting splines to D, such as negative forward

rates and instability at the long maturities.

There are three basic approaches to spline estimation: smoothing splines, regression splines,

and penalized splines (P-splines). Smoothing splines (e.g., Wahba, 1990; Eubank, 1999) are de-

fined for linear estimation problems. They require a knot at every distinct value of the independent

variable. A roughness penalty prevents overfitting, and because of fast algorithms the large num-

ber of knots is not a difficulty for linear estimation problems. Exactly how smoothing splines

generalize to nonlinear estimation is not clear, but certainly placing a knot at every observation

would cause difficulties. Regression splines use a small number of knots placed judiciously, and

the spline coefficients are estimated by ordinary (unpenalized) least squares. Shea (1984) found

that unrealistic term structure shapes could be caused by the subjective specification of regression

spline knots. Perhaps adaptive data-driven knot placement algorithms (Friedman and Silverman,

1989; Friedman, 1991) could ameliorate this difficulty with regression splines, but we are unaware

of research on adaptive knot placement for estimation of term structure. “Adaptive” means that

the knots locations depend on the response and are chosed to obtain a good but parsimonious fit.

In contrast, “automatic” knot placement used in this paper, e.g., placing the knots at quantiles of

the independent variable, is done independently of the response values.

P-splines, the approach taken in this paper, bypass the problem of knot placement. P-splines

require the user to choose only the number of knots, not their locations. Once the number of

knots is selected, the knots are located at equally-spaced points as in Eilers and Marx (1996) or,

as in Ruppert and Carroll (2000) and in Section 7, at equally-spaced quantiles of the independent

variable. A relatively large number, K, of knots is used, but still far less than for a smoothing

spline, e.g., a P-spline may use K = 20 for n = 200. This makes P-splines more suitable for

nonlinear problems such as estimating f . Because the roughness penalty prevents overfitting, the
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value of K is not crucial, provided that more than a minimum value is used; see Ruppert (2002).

P-splines, like smoothing splines, minimize the sum of a goodness-of-fit statistic plus a roughness

penalty. We model the spline as f(s) = δ′B(s), where B is a vector of spline basis functions and

δ is a vector of spline coefficients. The roughness penalty is λδ′Gδ where λ > 0 is a smoothing

parameter and G is a symmetric, positive semidefinite matrix. Possible choices of G are discussed

in Section 3.

Proper selection of λ to control the trade off between goodness-of-fit and smoothness is crucial

but complicated by three difficulties. The first, that GCV uses the trace of the smoother ma-

trix defined only for linear smoothers, is solved by F-N-Z’s approximation based upon a Taylor

linearization.

A second problem is that the choice of the smoothing parameter depends on the function

estimated. We are estimating f(t) = (d/dt)[− log{D(t)}], but since least-squares compares D(t)

to prices, GCV will choose the λ best for estimating D, not f . We address this problem by a

modification of the EBBS method of Ruppert (1997). EBBS minimizes an estimate of the mean

square error of f averaged across observed maturities.

A third problem is that GCV and related methods such as cross-validation (CV) assume in-

dependent errors. This assumption is suspect in our case. Because of possible correlation, an

alternative method of smoothing parameter selection due (Ellner and Seifu; 2002) based on RSA

is considered. However, in the case study we find that RSA and GCV seriously undersmooth while

EBBS works better.

We present a case study of US Treasury STRIPS and AT&T bonds over the 21 month period

from April 1994 to December 1995. A Treasury STRIPS (Separate Trading of Registered Interest

and Principal of Securities) is a synthetic zero-coupon bond constructed from Treasury bonds and

issued by the Federal Reserve. The AT&T bonds bear coupons. The data are from the University

of Houston Fixed Income data base (Warga 1995). One could estimate corporate term structure

using either a one-step and two-step procedures. The one-step method simultaneously estimates

the Treasury term structure and the spread for a single corporation. In the two-step procedure, first

one estimates the non-parametric Treasury term structure and then, with that term structure fixed,

estimates the parametric credit spread. The two-step procedure is motivated by the application at

hand. Although only one Treasury term structure exists, there are thousands of different corporate

term structures, one for each company issuing debt. It makes sense to estimate the Treasury term

structure only once, so we recommend the two-step procedure.

5



The remainder of the paper is organized as follows. Section 2 describes the fixed income data

base. Section 3 introduces P-splines and presents a spline model for Treasury bonds. Section 4

discusses the GCV, RSA, and EBBS criteria for selecting the penalty parameter. Section 5 describes

the two-step estimation procedure that we recommend. Asymptotics, confidence bands and tests

about the spread model are presented in Section 6. The case study is presented in Section 7.

Section 8 discusses some alternatives and potential implementation.

2 Data

The University of Houston Fixed Income data base includes over 28,000 instruments and covers

virtually every firm that has outstanding publicly traded non-convertible debt with principal value

of at least one million dollars. Information on individual bonds that make up the Lehman Brothers

Bond Indices are reported including month-end flat prices, accrued interest, coupon, yields, current

date, issuance date, maturity date, S&P and Moody’s ratings, and option-like features.

The data for our case study consists of all US Treasury STRIPS and all AT&T bonds. Market

prices are available for five AT&T bonds on December 31, 1995. All have semi-annual coupons with

different maturities and with no option embedded features, e.g., the right to prepay, for which our

price model does not apply. Each price is obtained from the quoted flat price plus the corresponding

accrued interest.

Issue and maturity are given in year-month-day format. We need the time-to-maturity and the

coupon payment times, ti,j , on the same scale. The MATLAB finance toolbox can easily handle

date conversions using, for instance, the functions days365(·) and days360(·), for dates based on

365 or 360 days a year; 30-day months or 360 days per year is a convention used for some types of

bonds, but not those in our case study. The coupon payment time can then be calculated by the

function cfdates(·). These calculations can also be easily implemented if the day counts need to

exclude holidays and weekends. We use MATLAB functions days365(·) and cfdates(·) based on

conventional actual/365 day count.

Table 2 lists the summary statistics for the numbers of US Treasury STRIPS and AT&T bonds

available over the 21 month period of April 1994 to December 1995 and demonstrates that far fewer

AT&T bonds are available than US Treasury STRIPS.

6



Table 1: AT&T Bonds on December 31, 1995. Dates and first coupon payment time ti,1 are
converted to numbers in units of one year using MATLAB functions days365(·) and cpndaten(·)
based on actual/365 day count. The current date is set to time 0.

Date(yr) Issue(yr) Maturity(yr) First Coupon(yr) Coupon Price
0 −3.9616 6.0411 0.0411 7.1250 109.4580
0 −1.7726 8.2493 0.2493 6.7500 106.2840
0 −1.5836 10.4164 0.4164 7.5000 111.4360
0 −0.8384 11.1644 0.1644 7.7500 115.5090
0 −0.6384 9.3699 0.3699 7.0000 107.6590

Table 2: Summary statistics of number of bonds available per month for period of April 1994 −
December 1995.

Bond Number Average Min Quantile(25%) Quantile(75%) Max
US Treasury STRIPS 117.7 115 116.75 119 120
AT&T 4.3 3 4 5 5

3 A Spline Model for the Term Structure of Treasury Bonds

The Treasury forward rate curve, denoted fTr, will be approximated by a spline fTr(t) = δ′B(t).

Here B(t) is a vector of spline basis functions, e.g., (truncated) power basis functions or B-splines,

and δ is the coefficient vector. We will use the p-th degree power basis functions, with B(t) =
(

1 t · · · tp (t− κ1)
p
+ · · · (t− κK)p

+

)′
and δ = (δ0, δ1, . . . , δp+K)′, where

{
κk

}K

k=1
are spline knots

and (t − κk)
p
+ = (t − κk)p if s ≥ κk and is 0 otherwise. The power basis is convenient because

polynomial submodels can be defined by setting certain coefficients to 0. This basis known to

be poorly conditioned, but the use of a penalty improves conditioning considerably. Moreover,

if conditioning becomes a problem, one can compute in a different basis and then transform the

results back to the power basis; see Ruppert (2002).

Then fTr(t) is estimated by minimizing

Qn,λ(δ) =
1
n

n∑

i=1

{Pi − P̂i}2 + λδ′Gδ. (5)

There are several sensible choices for G. One choice is given by Ruppert and Carroll (2002),

where the power basis functions are used and G is a diagonal matrix with its last K diagonal

elements equal to one and all others zero. This G penalizes jumps at the knots in the pth derivative

of the spline. As λ →∞ the fit converges to a pth degree polynomial fit. This penalty can be viewed

as a penalty on the p + 1th derivative where that derivative is a generalized function. Schwartz
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(1998) uses piecewise constant (p = 0) splines with no penalty (λ = 0). In our numerical work in

Section 7.1 we will use this penalty with p equal to 2.

A second choice, the quadratic penalty on the dth derivative,
∫ {f (d)(s)}2 ds, for d ≤ p, uses

Gij =
∫

B
(d)
j (s)B(d)

k (s)ds, where Bj(t) is the jth element of B(t). P-splines with this choice of G

were proposed by O’Sullivan (1986). Estimates using this penalty with d = p = 2 are similar to

our numerical results in Section 7.1. The choice d = 2, the usual choice for smoothing splines,

penalizes any deviation from linearity. In their maximum smoothness approach, Adams and Van

Deventer (1994) use d = 2. Frishling and Yamamura (1997) use d = 1, which penalizes deviations

from a constant function. If a quadratic integral penalty is used, then as λ → ∞ the estimated

forward rate converges to the d− 1th degree polynomial fit. If λ = 0 then the fit is a non-penalized

regression spline.

We can rewrite expression (5) in a more revealing form. Because splines are piecewise polyno-

mials, it is easy to compute their integrals. In our model,
∫ t
0 f(s)ds = δ′

∫ t
0 B(s)ds. Denote

BI(t) :=
∫ t

0
B(s)ds =

(
t · · · tp+1

p + 1
(t− κ1)

p+1
+

p + 1
· · · (t− κK)p+1

+

p + 1

)′
.

We can simplify notation by expressing the model price in terms of BI so that (5) becomes

Qn,λ(δ) =
1
n

n∑

i=1

{
Pi −

zi∑

j=1

Ci(ti,j) exp{−δ′BI(ti,j)}
}2

+ λδ′Gδ. (6)

4 Selection of the knots and Smoothing Parameter

4.1 Choosing the knots

An advantages of our P-spline approach is that the knots can be chosen automatically; following

Ruppert and Carroll (2000) and Ruppert (2002) the knot κk is the k
(K+1)th sample quantile of

the ti,zi ’s. Ruppert (2002) has a detailed study of the choice of K. We recommend that K be

sufficiently large, say 8 or more, to accommodate nonlinearity of fTr, but a larger K does not cause

overfitting provided λ is suitably chosen.

4.2 Linearized Generalized Cross Validation

A smoother is linear if P̂ and P are related by P̂ = A(λ)P for some “smoother” matrix A(λ) inde-

pendent of P. GCV is an approximation to cross-validation (CV) where λ is chosen by minimizing

GCV (λ) =
n−1 ∑n

i=1

{
Pi − P̂i

}2

{1− n−1trA(λ)}2
. (7)
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GCV applies to linear smoothers, but following F-N-Z we can Taylor expand the model about δ̂ to

linearize. Let the model price of the ith bond be mi(δ) := P̂i =
∑zi

j=1 Ci(ti,j) exp {−δ′BI(ti,j)}.
Also m(1)(δ̂) :=

(
m

(1)
1 (δ̂(λ)) m

(1)
2 (δ̂(λ)) · · · m

(1)
n (δ̂(λ))

)′
, where m

(1)
i (δ̂(λ)) = ∂mi(δ)

∂δ′
∣∣∣
δ̂(λ)

=

−∑zi
j=1 Ci(ti,j) exp{−δ̂

′
BI

i (ti,j)}BI
i (ti,j). Define

Σn = n−1
[
{m(1)(δ̂)}′m(1)(δ̂)

]
. (8)

The approximate linearized smoothing matrix operator is then A(λ) = m(1)(δ̂) {n(Σn + λG)}−1

{m(1)(δ̂)}′. We use the trace of A(λ) as the effective degrees of freedom (Hastie and Tibshrani 1990)

and then λ minimizes GCV in equation (7). The computation of DF(λ) = tr{A(λ)} is rapid; one

only needs to compute a (1+p+K)×(1+p+K) matrix because tr {A(λ)} = tr
{
(Σn + λG)−1Σn

}
.

In our case study, the performance of GCV was not entirely satisfactory, which led us to search

for alternatives, first RSA and then EBBS.

4.3 Residual Spatial Autocorrelation

The RSA method of Ellner and Seifu (2002) applies Moran’s index of spatial autocorrelation I to

the residuals to chooses the λ giving the least deviation of I from its expectation under a random

permutations. We refer the reader to Ellner and Seifu (2002) for details.

4.4 EBBS

EBBS (Empirical Bias Bandwidth Selection) developed by Ruppert (1997) for choosing the band-

width for local regression can be extended to other smoothing parameters. EBBS models the bias

as a function of the smoothing parameter. The variance of the estimated function can be estimated

by an asymptotic formula; see (10). To estimate MSE, the estimated bias is squared and added

to the estimated variance. When applied to the fTr, we have MSE(f̂Tr; t, λ), the estimated MSE

of f̂Tr at t and λ. MSE(f̂Tr; t, λ) can be averaged over maturities ti,zi , i = 1, . . . , n and then

minimized over λ.

The key issue is how to estimate bias. Let f̂Tr(t, λ) be f̂Tr depending on maturity and λ. To

estimate bias at λ, assume f̂Tr(t, λ0) for some small λ0 is unbiased. Then f̂Tr(t, λ) − f̂Tr(t, λ0)

estimates the bias at λ > λ0. The variance of f̂Tr(t, λ) is estimated by (9) and (10) below. The

choice of λ0 is discussed in Section 7.

9



5 The Two-Step Estimation Procedure

Because there is only one Treasury curve but many corporate bond types (and credit spreads), we

recommend the two-step procedure, now discussed in more detail:

Step 1: Nonparametric P-spline fitting of a forward rate to US Treasury bonds.

The Treasury forward rate curves fTr or, equivalently, δ is estimated by minimizing Qn,λ(δ)

in (6) and λ is chosen by GCV, RSA, or EBBS as discussed in Section 4. Then f̂Tr(t) = δ̂
′
B(t),

where δ̂ are the estimated spline coefficients.

Step 2: Parametric estimation to obtain the forward rate curve for a corporation’s

bonds.

The forward rate of a corporation’s bonds is modelled as fC(t) = fTr(t) + polynomial spread,

with fTr = f̂Tr from the first step.

We adopt polynomial spreads of low degree for several reasons. There are only five AT&T bond

prices, so a simple parametric model is necessary. As can be seen Table 1, the maturities of AT&T

bonds are between 6 and 11.2 years, so estimation of the spread for t > 11.2 is extrapolation, with

well-known dangers, and there also is relatively little information about the spread for t < 0. Using

a simple parametric model of the spread will cause some bias, but this bias should be small. Our

reasoning is as follows. The estimated forward rate is between .05 and .07 but the estimated spread

is an order of magnitude smaller, about .005; see Figure 5. Moreover, the change in the linear

spread between 6 and 11.2 is less than .002. It seems reasonable that the bias using a constant

spread is of order .002 or less, at least for t ∈ [6, 11.2]. As reported later, tests that the spread

is constant accept this hypothesis. The point is not that the null hypothesis is exactly true, but

rather that any deviation from it is likely to be too small to detect or model with the available

data. Therefore, the spread will be modelled by a constant term α (constant spread), by α + βs

(linear spread), or by α + βs + γs2 (quadratic spread). The spread parameters can be estimated

by parametric nonlinear least-squares with δ fixed at δ̂ from step 1.

6 Asymptotic Properties and Inference

In this section we develop asymptotic properties needed for inference and to justify the linearized

GCV in Section 4.2.

In the following, n is the number of Treasury bond prices. We only study large-sample asymp-

totics for Treasury prices. The number of corporate bonds is usually so small that large-sample

theory seems pointless. For corporate bonds, we use low-noise asymptotics motivated by the low
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noise seen in Figure 1.

Asymptotics could be developed with K → ∞ as n → ∞, but fixed-K asymptotic is most

relevant for applications where large sample theory provides approximate distributions. These

approximations should be most accurate if K is held at the value used in an application.

Since K is fixed, consistency will mean convergence of δ̂ to δ0 defined as follows. Assume that

the empirical distribution of {ti,zi}n
i=1 converges weakly to some limiting distribution FX . Consider

the space of splines with knots equal to F−1
X {`/(K+1)}, ` = 1 . . . , K. Then let δ0 be the coefficients

of the spline that best approximates fTr in L2(FX). Ruppert (2002) results suggest that for smooth

fTr, the best L2 approximation is quite close to fTr and the bias due to approximating fTr by a

spline is negligible compared to the standard deviation and bias due to the penalty.

6.1 Large-Sample Asymptotics with λn → 0

Denote λ by λn. The variance of δ̂ goes to 0 as n tends to ∞ whether or not λn tends to 0.

However, if λn → 0 as n → ∞, then the bias also tends to 0 and consistency can be established.

The assumptions of the following two theorems are in the appendix. The proofs are similar to those

in Yu and Ruppert (2002) and are omitted.

Theorem 1 Let (δ̂n,λn) be a sequence of penalized least squares estimators minimizing (6). Under

assumptions 1 and 2, if the smoothing parameter λn is o(n−1/2), then δ̂n is a (strongly) consistent

estimator of true parameter δ0.

Theorem 2 Let (δ̂n,λn) be a sequence of penalized least squares estimators of equation (6). Un-

der assumptions 1 through 4, if the smoothing parameter λn is o(n−1/2), then
√

n(δ̂n,λn − δ0)
D→

N(0, σ2
0Ω

−1(δ0)), where Ω(δ0) := limn Σn, is defined in equation (8).

6.2 Large-Sample Asymptotics with λ fixed and the sandwich formula

The asymptotic variance in Theorem 2 does not involve λ since λ goes to 0. In finite samples this

asymptotic variance will over-estimate the variance of δ̂ which is decreasing in λ, so for inference

we give the asymptotic distribution of δ̂ when λ is fixed.

Using estimating equations, e.g., in Carroll, Ruppert, and Stefanski (1995), we can derive the

“sandwich formula” for the asymptotic variance matrix of δ̂(λ). From (6), δ̂(λ) is the solution to the

estimating equation 0 = ∂
∂δQn,λ(δ) =

∑n
i=1 ψi(δ, λ,G), where ψi(δ, λ,G) = −{Pi −mi(δ)}m

(1)
i (δ)

+λGδ. The sandwich formula for the asymptotic variance matrix of δ(λ) is V̂ar
{
δ̂(λ)

}
= n−1B−1

n
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An B−1
n , where An = n−1 ∑n

i=1 E{ψi(δ, λ,G)ψi(δ, λ,G)′} = σ2Σn, and, with Σn as in (8), Bn =
∂

∂δ′
n−1 ∑n

i=1 E{ψi(t, T, δ, λ,G)} = Σn + λG. Therefore

V̂ar{δ̂(λ)} =
σ2

n

[
{Σn + λG}−1Σn{Σn + λG}−1

]
. (9)

Note that as λ → 0, V̂ar{δ̂(λ)} converges to n−1σ2Σ−1
n as given in Section 6.1.

6.3 Confidence bands for fTr

Since the estimated Treasury forward rate at time t for a Treasury STRIPS is δ̂
′
B(t), a standard

error for this forward rate is

sd{f̂Tr(t)} =
√

B(t)′
[
V̂ar{δ̂(λ)}

]
B(t), (10)

where V̂ar{δ̂(λ)} is given by (9). By a delta method calculation, the standard error of the estimated

discount function, D̂T (t) = exp(−BI(t)δ̂) is easily obtained. From these standard errors, pointwise

(1− α) confidence band for fTr(t) and DT (t) are obtained in the usual manner.

6.4 Low-Noise Asymptotics

The usual linear model approximation to a nonlinear regression model uses the law of large number

for consistency and then a Taylor series linearization and the central limit theorm for asymptotic

normality. Since the number of corporate bond prices is generally very low, e.g., 5 in our case study,

large-sample theory is of dubious value. However, one can justify the linear model approximation

by ”low-noise” asymptotics where the variance of the errors goes to 0 with the sample size fixed.

Of course, the central limit theory does not apply but it is not necessary if the errors are normally

distributed. Low-noise asymptotics are very simple, but as far as we are aware have not be discussed

in the context of nonlinear regression. Simultaneous low-noise and large-sample asymptotics have

been applied to other problems, e.g., transformation models (Bickel and Doksum, 1981; Carroll

and Ruppert, 1981) and measurement error (Stefanski, 1985).

We will work with a general nonlinear model yi = m(xi, θ0) = σεi, where {εi}n
i=1 are iid N(0, 1).

Define S(θ) =
∑n

i=1{m(xi, θ)−m(xi, θ0)}2. Assume that for all ∆ > 0,

inf
‖θ−θ0‖>∆

S(θ) > 0. (11)

Define H(θ) =
∑n

i=1{yi −m(xi, θ)}2. Then

H(θ) = S(θ) + 2σ
n∑

i=1

εi{m(xi, θ0)−m(xi,θ)}+ σ2
n∑

i=1

ε2i . (12)
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Let θ̂ be the least-squares estimator. Assume that for each fixed xi, m(xi, θ) is bounded over the

parameter space Θ; this assumption holds in our case study since the discount function takes values

on [0,1]. Then by (12) with n fixed as σ → 0, T (θ) → S(θ) uniformly on Θ, so by (11) θ̂ → θ0 as

σ → 0.

Therefore, as σ → 0, yi − {m(xi, θ̂) + m(1)(xi, θ̂)′(θ̂ − θ0) + εi} = o(σ). This gives us a linear

model in the limit. To use this linear model approximation, let ε be the vector with ith element

εi and let X be the matrix with ith row equal to m(1)(xi, θ̂)′. Then θ̂ = θ0 + (X′X)−1X′ε + o(σ).

If follows that as σ → 0, then (θ̂ − θ0)/σ converges in distribution to N(0, (X′X)−1), so that

θ̂ ≈ N(θ0, σ
2(X′X)−1).

Moreover, F-test statistics for linear hypotheses about θ will converge in distribution to F-

distributions as σ → 0. Since σ̂ is not consistent in that σ̂/σ does not converge to 1 as σ → 0,

Wald test statistics will not have chi-square limits so F rather than Wald tests should be used.

6.5 Inference about the spread parameters

For inference about the spread, we use fTr equal f̂Tr from the first step and treated as fixed. This

gives us a parametric nonlinear regression model in the spread parameters. Using the low-noise

asymptotics of Section 6.4, this model can be linearized. Confidence intervals and F-tests about

the spread parameters are then standard.

7 The AT&T Case Study

In this section, we return to our example of the term structure for AT&T bonds.

7.1 Estimation Results

We applied the two-step procedure to the STRIPS and AT&T bond prices from April 1994 through

December 1995. First, we concentrated on STRIPS prices on December 31, 1995, which are plotted

in Figure 1. Since the STRIPS are zero coupon bonds, the prices in Figure 1 follow the discount

function D.

We used prices on this date as a test bed for our methods, especially of choosing the smoothing

parameter. Our main conclusions were:

• The GCV and RSA methods of smoothing parameter selection are unstable for estimation of

fTr with f̂Tr depending heavily on the number of knots.
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– GCV or RSA could be used if the number of knots is chosen carefully, though this

introduces subjectivity.

• EBBS, however, is stable with the fitted curve independent of the number of knots.

– if EBBS and a quadratic spline are used, then anywhere between 5 and 80 knots, and

perhaps more, will work well, with f̂Tr depending very little on K.

• the residuals are autocorrelated.

– however, autocorrelation does not affect EBBS much, and EBBS can be corrected for

autocorrelation.

– standard errors that assume independence are too small, but can be corrected.

Figure 2 plots the GCV function and the EBBS estimate of the
∑n

i=1 MSE(f̂Tr; t, λ) for 12

values of λ with log10(λ) equally spaced between 0 and 11. Quadratic splines with K = 25 knots

were used. GCV is minimized at the second smallest value of λ with DF(λ) approximately 24.7, but
∑n

i=1 MSE(f̂Tr; t, λ) is minimized at a much larger λ with DF(λ) near 3.7, effectively 21 parameters

less than GCV.

Figure 3 compares the GCV and EBBS estimates of fTr and DT , plots of residuals against

maturity, the sample autocorrelation function of the residuals, and normal plots of the residuals.

The GCV estimate of fTr is very rough. The problem is that, as discussed in Section 1, GCV

is sensitive to D̂T , not the derivative f̂Tr. The EBBS, RSA and GCV estimates of fTr are also

plotted in Figure 4(a) along with the empirical estimates of fTr by differencing. GCV tracks the

empirical estimates closely while EBBS smooths away local variation. GCV is even more extreme

in tracking the data if K is larger. For example, with K = 80, GCV chooses DF(λ) ≈ 66 and the

fit oscillates widely attempting to interpolate the empirical estimates. Figure 3 suggests that the

residuals are autocorrelated when λ is large but not when λ is small. There are two very different

explanations. One is that the “true” fTr has fine detail that is being estimated correctly with

the small value of λ selected by GCV and a large number of knots. If this explanation is true,

that the autocorrelation seen in the residuals when λ is large is due to bias. A second explanation

is that the fine detail is not “real” but is an indication of autocorrelated errors. In this case,

the spline fits the forward rate plus the errors, thus removing the correlation from the residuals.

Recall that a principal source of error is price “staleness.” If bonds of similar maturity were last

traded at about the same time, then staleness would be correlated as would the errors. The data
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alone cannot decide between the two explanations, since nonparametric regression with correlated

errors is a non-identified problem — one cannot distinguish between a high frequency component

in the regression function and correlated noise. As with all non-identified problems, subject matter

knowledge is essential to decide between the two explanations. In this case, we know of no financial

reasons why the true fTr should have very fine detail so we accept the second explanation.

If the errors are, in fact, positively correlated then the variance of f̂Tr is somewhat larger than

indicated by our standard errors, which assume independence. To correct the standard errors, first

we modeled the autocorrelation function (ACF). Parsimonious ARMA models did not fit well, but

as can be see in Figure 3, the sample ACF (SACF) decays nearly linearly from 1 to 0 as the lag

increases from 0 to 10. Therefore, we modeled the ACF as ρ(k) = max{0, (1 − |k|/10)}. This

is the ACF of the moving average process εt = ut + · · · + ut−9, where {ut} is white noise. This

ACF is plotted in Figure 3, fourth row of the “EBBS” column as “linear SACF.” Notice the close

agreement with the SACF. Let Rn the be correlation matrix of P under this ACF. The corrected

sandwich formula is

V̂ar{δ̂(λ)} =
σ2

n

[
{Σn + λG}−1Cn{Σn + λG}−1

]
. (13)

where Cn is the adjustment of Σn in (8) for autocorrelation: Cn = n−1
[
{m(1)(δ̂)}′Rn{m(1)(δ̂)}

]
.

What are the implications of autocorrelation for smoothing parameter selection? If the errors

are correlated, then the premise behind RSA is false, so its ability to select a correct amount of

smoothing is dubious. Also, cross-validation and GCV are known to perform poorly in the presence

of correlated noise, since undersmoothing causes the fit to estimate the regression funciton plus the

interpolated noise and reduces the CV and GCV criteria (Hart, 1991). EBBS may also undersmooth

since it underestimates variance, but is apparently much less susceptible to undersmoothing than

GCV and RSA. Also, we modified EBBS method by using (13) as the variance estimate. Figure

2 shows both the uncorrrected and corrected estimates of variance and mse. The corrected EBBS

chooses DF(λ) equal to 3.1, compared to 3.7 for uncorrected EBBS. Such a small change in the

amount of smoothing has no noticeable effect on the fit.

We experimented with using other values of K besides 25, in particular, values between 5

and 80. The EBBS fitted curves varied little with K. As mentioned above, GCV is even more

undersmoothed with large K, say K = 80, than with K = 25. The GCV or RSA fitted curves are

relatively smooth if K = 8 and, in fact, for K = 8 the GCV, RSA, and EBBS curves are similar;

see Figure 4(bottom panel). Thus, one can use GCV if K is chosen appropriately. However, the

appropriate choice of K may depend on the particular application, so we recommend EBBS which
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is stable over a wide range of K. If one is interested only in D, then, besides EBBS, GCV and

RSA also appear suitable for selecting λ. For comparison purposes, we will report results for GCV,

RSA, and EBBS, but we recommend EBBS.

Since EBBS is choosing between 3 and 4 degrees of freedom, K could be quite small; K sets a

maximum of 3 + K on DF(λ) when a quadratic spline is used. Five knots is probably sufficient.

We do not recommend 25 knots. Rather, we initially used 25 knots to illustrate the problems of

GCV and how EBBS avoids them.

We initially used a very wide range of value of λ corresponding to a range for DF(λ) from

approximately 3 to 27.2; the maximal range is 3 to 28. However, we used this wide range for

exploratory purposes and to show the problems with GCV. In practice we recommend that the

range of λ correspond to approximately 3 to 12 degrees of freedom, and even an upper bound of

12 may be unnecessarily high. EBBS uses fit with the largest value of DF(λ) to estimate bias.

Fortunately, EBBS seems very insensitive to the choice of the baseline. When the large value of

DF(λ) was decreased from 27.2 to approximately 12, the amount of smoothing selected by EBBS

did not change.

Schwartz’s (1998) method which uses p = 0 and no penalty and subjectively chosen knots is

the main competitor to the F-N-Z method and our extension thereof, since other spline approaches

do not estimate fTr. Figure 4 (a) compares the fitted forward rates by Schwartz’s (1998) method

with quadratic splines with λ chosen by EBBS. Schwartz (1998) used the 8 knots located at 1, 2,

3, 4, 6, 8, 10, and 18 years. We used knots at equally-spaced quantiles. In this example, GCV and

RSA give essentially the same fit.

The normal plots in Figure 3 shows the GCV residuals to be heavy-tailed. The EBBS residuals

are light-tailed though more variable than the GCV residuals.

7.2 Modeling the Spread Function

The F-tests in Section 6 can test hypotheses of economic interest about the spread. A simple model

that the spread is constant is tested by testing that β = γ = 0 where the spread is α + βs + γs2.

The F-statistic for this hypothesis is .098 with a p-value of .91. If instead one tests a constant

spread versus the alternative of a linear spread, then the p-value is .20.

The risk of default by AT&T immediately after time t = 0 is negligible, and the spread at t = 0

is due to liquidity risk, not credit risk. AT&T bonds are less liquid than Treasury bonds, so there

is no guarantee that an AT&T bond holder could sell the bond immediately if that were necessary.

If cash were needed quickly, the bond holder might need to sell at a discount to find an immediate
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buyer. This is liquidity risk. In the linear or quadratic spread models, the intercept α of the spread

can be interpreted as liquidity risk. The test that α = 0 in the quadratic spread model has an

F-statistic of 39.35 with a p-value of .024.

In the constant spread model, α = 0 corresponds to no spread so one can test for the existence

of spread by testing that α = 0. For this test, the F-statistic is 996 and the p-value is almost zero.

There is extremely strong evidence that a spread exists.

Mallow’s Cp was computed for five models: constant, linear, quadratic, linear spread without

an intercept, and quadratic spread without an intercept. The Cp values were: 3.05, 2.21, 3.00,

64.92, and 40.35.

In summary, the constant spread model is supported by the data but there is little evidence

that more complex models are needed, though the linear spread minimizes Cp. Models without an

intercept, which correspond to no liquidity risk, seem contradicted by the data.

Figure 5 graphs the fitted forward rates on AT&T bonds on December 31, 1995, with constant,

linear and quadratic spread terms.

Until now, we have only used end of the month data for December 1995. However, modeling the

evolution of the term structure is an important problem in finance and is necessary, for example, to

price interest rate derivative (Jarrow, 2001). To study this evolution, we fit the AT&T bond prices

separately for each month over the 21 month period of April 1994 to December 1995. Figure 6

shows the evolution of the end-of-month forward rates estimated by quadratic P-splines and EBBS,

with a constant spread. If we fix maturity, and observe the forward rate as a function of time, then

we see a rough curve. This is to be expected, since interest rates move randomly and abruptly.

This is why we did not use a bivariate smooth in maturity and time.

8 Discussion

We have shown how to use a semiparametric model to estimate the forward rates of individual

corporate debt with limited data. When GCV and RSA are used, the number of knots must be

chosen carefully, which negates one advantage of P-splines that they are rather insensitive to the

number of knots. If EBBS is used, then fitted forward curve is satisfactory regardless of the number

of knots, so that EBBS is recommended. The application of EBBS to spline estimation is new and

should be of interest in other situations where a derivative is being estimated. Sometimes GCV

works satisfactorily for that purpose (Ruppert, Wand, Carroll, 2003), but as we have seen that

GCV fails in our case study, probably because of the very low noise and the correlated errors. Low
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noise and correlated errors are the characteristic distinguishing this example from data sets where

we have seen GCV work well for derivative estimation.

We modeled the autocorrelation function and implemented a corrected EBBS. The amount

of smoothing selected by correlation-corrected EBBS was indistinguishable from the amount that

uncorrected EBBS selected.

By applying our methodology separately to each of a series of months, we can observe the

evolution of the term structure. Modeling this evolution is of paramount importance for, inter alia,

pricing interest rate derivatives.

A Assumptions

The following assumption is needed for the proof of (strong) consistency.

Assumption 1 The parameter space Θ is compact. The mean function m(·) is continuous on Θ,
1
n

∑n
i=1

{
mi(δ) −mi(δ̃)

}2
converges uniformly to some limit in δ, δ̃ ∈ Θ, and Q(δ) = lim 1

n

∑n
i=1{

mi(δ0)−mi(δ)
}2

exists and has a unique minimum at δ = δ0.

Under the following additional assumption, asymptotic normality can be established.

Assumption 2 The true parameter vector δ0 is an interior point of Θ, the mean function m(·) is

twice continuously differentiable in a neighborhood of δ0 and Ω(δ0) := lim 1
n

∑n
i=1 m

(1)
i (δ0)m

(1)
i (δ0)′

exists and is non-singular, where m
(1)
i (δ0) = ∂mi(δ)

∂δ′
∣∣∣
δ0

. Furthermore, 1
n

∑n
i=1 m

(1)
i (δ)m(1)

i (δ)′ and

1
n

∑n
i=1

∂2mi(δ)

∂δj∂δk
′

∣∣∣
δ
, j, k = 1, ...,dim(δ), converge uniformly in δ in an open neighborhood of δ0.
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Figure 1: (a) Price versus maturity for the US Treasury STRIPS. Note the very low noise. (b)

Forward rate estimates with 25 knot quadratic splines. The empirical estimate is the time series

of finite different quotients, that is, the ratios of changes in minus the log-prices to changes in

maturity times when the data are order by maturity time; see text on page 1. P-splines have λ

estimated by EBBS and GCV.
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Figure 2: (a) GCV as function of DF(λ) = tr{A(λ)}. (b) Estimated sum of MSE’s and sum of

variances for estimated forward rates as function of DF(λ). Quadratic spline with 25 knots.
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Figure 3: The fitted forward rate and discount function, residuals, and sample autocorrelation

function of the residuals for λ chosen by GCV (left) and by EBBS (right). Normal plots of residuals

also included.
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Figure 4: Fitted forward rate curves on US STRIPS on December 31, 1995. (a) Quadratic P-splines

with λ chosen by EBBS compared to Schwartz’s (1998) piecewise constant spline with no penalty.

(b) Comparison of 25-knot quadratic P-spline fits by GCV, RSA, and EBBS. (c) Same as (b) but

with only 8 knots.
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Figure 5: Fitted forward rate curves for AT&T bonds on December 31, 1995. Constant, linear,

and quadratic spreads. Note: there are no AT&T bonds with maturities beyond 11.2 years, so the

estimates beyond that maturity are extrapolations.
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Figure 6: Fitted forward rate curves on AT&T and US STRIPS over the 21 month period of April

1994 to December 1995, p = 2 and smoothing parameter λ is chosen by GCV with constant spread.
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