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1 Introduction

In finance, a stock return is a basic measurement index of the stock market. From the

mathematical statistic viewpoint, stock returns are usually assumed to follow the

normality distribution.

But according to the empirical examinations shows that the tails of stock returns are

fatter than the tails of the normal distribution.1 That means normal distribution can

not accurately describe stock returns by definition.

Therefore, it is necessary to find new distribution assumptions to research this

problem, as the student t distribution. Of course, it must be tested to verify whether it

is better than the normal distribution.

Besides, stock returns are considered as portfolio or asset returns in practice. The

multivariate distribution function is more appropriate to large assets of return.2 And a

method is needed to find, which can link the univariate model of stock returns to a

joint distribution model.

To sum up, there are questions: How to form the proper joint distribution of asset

returns? What are the criteria for a good approach to constructing joint distribution of

asset returns?

I will find different ways to construct joint distribution and carried out empirical

analysis of sample data in R to solve those problems. The GARCH volatility model,

Maximum likelihood estimation method, QQ plot, DCC model, and threshold

correlation plot will be discussed as base models. Lots of figures and calculations are

used to render results of questions.

The goal of this paper is to answer the above questions. And according to different

results of the goodness-of-fit, the best approach to constructing joint distribution of

asset returns will be received.

Finally, the conclusion of the object: empirically compare different approaches to

constructing a joint distribution of asset returns and its significance is the most

important.

1 Christoffersen(2012), S. 121
2 Christoffersen(2012), S. 195
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2 Research design

2.1 How to approach joint distribution of asset returns

2.1.1 Multivariate normal distribution of asset returns

2.1.1.1 GARCH model of dynamic variance

Daily stock return can be expressed by 1tr using daily closed prices of stock 1tS

and tS . That is   tttt SSSr /11   .

When the object of research is over a while and continuously, log returns of stock will

be calculated. The notation 1tR shows daily log return from natural logarithm:

)/ln( 11 ttt SSR   .3 The stock log returns will be used as main observation objects of

this paper.

The normal distribution called also Gaussian distribution in the point of mathematical

probability theory. The formula is ))(
2
1exp(

2
1)( 2








xxf with notation

),(~ 2NX . And parameter μ is mean of normal distribution and σ means standard

deviation. Notation 2 is the variance of distribution.

Standard normal distribution is the simplest form of normality distribution. Parameter

μ is equal to 0 and σ is equal to 1. In this case, the formula defined as

)
2
1exp(

2
1)( 2xxf 


. When the sample Observations of a random variable with

mean equal to zero and variance equal to one, that means the sample is converged to

standard normal distribution.4

Firstly, the assumption of normal distribution for stock returns can be written as:

111   ttt zR  , where 1tz is a innovation term and conform to normal distribution

with )1,0(~1 Nzt .

3 Christoffersen(2012a), S. 8; Christoffersen(2012b), S. 68
4 Patel(1996), S. 19; Read(1996), S. 19
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The above formula of assumption contains the relationship between dynamic variance

2
1t and the whole returns distribution. Given the time-varying variance:




 
m

tt R
m 1

2
1

2
1

1


 , where m is random samples of objects. The notation 2R is

squared returns. It is an equivalent of 1tR squared. A simple variance forecasting is

measured by squared return.5

So that it is necessary to illustrate a generic variance model called JP Morgan’s

RiskMetrics. Tomorrow’s variance can be calculated by all of the past squared stock

returns, that is:








 

1

2
1

12
1 )1(




 tt R

And the actual variance with past squared returns can be explained by form：








2

2
1

12 1)1(






 tt R

If combine these two formulas, tomorrow’s variance will be written as:

222
1 )1( ttt R 

It is clear to see that change of forecasting tomorrow’s variance is generally same as

the change of current variance and squared returns. Parameter  is the only

unknown value.6 The process of estimation will be simplified. But this model ignores

the leverage effect, which means a negative correlation between variance and stock

returns.7 And the RiskMetrics does not allow long horizons. If we considering brief

dynamic variance, the result of the RiskMetrics and GARCH volatility model are

similar to each other. But if time series is longer, today’s variance will affect

forecasting variance greatly. For the GARCH model, the predicted tomorrow’s

variance tends to the average value.8 So GARCH variance model is a better tool to

solve the problem.

5 Christoffersen(2012), S. 68
6 Christoffersen(2012), S. 69-70
7 Christoffersen(2012), S. 76
8 Christoffersen(2012), S. 72
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For a series of logarithmic stock returns 2
tR , the GARCH model for tomorrow’s

variance can be represented as 2
t

2
1

2   tt R (Formula 1), when the

conditional 1  is satisfied. And the GARCH model is flexible by setting

parameter ω,α, and β.

Then the moving unconditional average variance can be defined in terms of the

expected values by:

      2222
1

22    ttt EREE (Formula 2).

Thus, it is easy to get a form from formula 1 and 2:

)()( 22222
1

2   ttt R .

The GARCH model forecasting variance of log returns on k days can be written as:

        ))(( 2
1

22
1

22
1

222    kttkttkttktt EEREE .

To make it easier to modelling long-run forecasting, the form can be expressed by:

    )()()()( 2
1

212
1

2122   





 t
k

tt
k

ktt EE .9

From the above formula, we can see the advantage of the GARCH variance model is

that the forecast of k days or months variance will be directly by tomorrow’s variance

1
2
t established. When the parameter   close to 1, the formula is simpler than

before. That is   1
22
  tkttE  .

On the other hand, the forecast GARCH variance model of K-days cumulative returns

is:








 

K

k
t

k
K

k
tktt K

1

22
1

12

1

2
1

2
;1 )()( 

The K-days cumulative stock returns can be given by: 


 
K

k
ktKtt RR

1
;1 . And

9 Christoffersen(2012), S. 70-71
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Variance in cumulative returns is  


 
K

k
kttKtt E

1

22
;1  .10

2.1.1.2 Maximum likelihood estimation

According to the time-varying variance dependence on parameter ω,α, and β. So that

how to estimate unknown parameters in the GARCH volatility model must be

considering. So the maximum likelihood estimation method can be used to get those

parameters.11

The maximum likelihood(MLEs) is a tool for inference and prediction of the target

model.

The maximum likelihood estimated using the log of likelihood function because

Log-likelihood is more close to its maximum value. The maximum values are

approximate value and quantified by ratios of likelihood or log function scalars.12

Now recall the assumption of stock returns:

ttt zR  , with )1,0(~ Nzt

The likelihood function of assumption return can be written by:

)
2

exp(2/1 2

2
2

t

t
tt

Rl


  , where notation tl is a likelihood.

For multivariate likelihood of returns, the form can be written by:





T

t t

t
t

RL
1

2

2
2 )

2
exp(2/1




The result of the maximum logarithm of the joint likelihood function will be same as

the maximum value of likelihood estimation so that the formula is:














T

t t

t
t

T

t
t

RMaxlMaxMaxInL
1

2

2
2

1 2
1)ln(

2
1)2ln(

2
1)ln(




This formula shows the way to evaluate unknown parameters ω,α, and β of the

10 Christoffersen(2012), S. 72
11 Christoffersen(2012),S. 73
12 Maindonald, J.(2010), S. 133; Braun, W.(2010), S. 133
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GARCH variance model, which can be represented as 2
t

2
1

2   tt R . That

means the term )2ln(
2
1  has seemed as constant parameter ω. Therefore, the

simplest form is:

 









T

t

t
t

RMax 2

2
2

2
1)ln(

2
1




There is impossible if choosing infinity large past returns as sample data. But let

samples in sufficient numbers and monthly frequently is necessary for the calculation

of parameters of the GARCH volatility model.13

For multivariate asset returns, the maximum log-likelihood function of the

multivariate normal distribution can be written as:

 
t

tttt zzL )(log
2
1)ln( 1' , with asset returns tz and the determinant of the

correlation matrix t .

The function can be expressed using the idea of DCC model and the computational

procedure will be easier. The maximum likelihood function can be written as:


 

 



T

t

n

i
ij

ij

jiijji
tij

zzzz
CL

1 1
2

22
2
, )

1
2

)1(ln(
2
1)ln(




 , where notation tij , means the

correlation between different assets.14

The above calculation procedure is easy to run in the R program language. For

example, unknown parameter omega, alpha, and beta in the GARCH variance model

will be obtained as coefficients in console.

2.1.1.3 Dynamic conditional correlation(DCC) model of asset returns

The multivariate normal distribution can be obtained by univariate normal distribution

with n-dimensions. In normal distribution, the notation of probability function is

13 Christoffersen(2012),S. 74
14 Christoffersen(2012),S. 164-165
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),(~ 2NX .

Now constructing a multivariate normal distribution of random vector

.)......,( 21
T

nxxxX  The notation of multivariate probability function is

 ),(~ NX with mean of multivariate normal distribution μ and matrix of

covariance ∑. The formula can be written as:

))()(
2
1exp(

)2(
1),....,( 1

1 





  XXxxf T
knX

To discuss multivariate model for stock returns, the correlation between different

stocks will be considering. So the dynamic conditional correlation(DCC) model is

proposed. Also, the GARCH model is usually combined with the DCC model to

analyze time-varying correlations.

In the bivariate case, the correlation between stock i and j is defined by notation

.1, tij And the form of correlation is
)( 1,1,

1,
1,




 

jti

tij
tij 


 , with variance and

covariance of assets.

Then building the value of standard deviation matrix and correlation matrix using

1tD and 1t :







































 
1,2

1,1

1,12

1,12

1,2

1,1

1 111 0
0

1
1

0
0

t

t

t

t

t

t

t ttt DD











Now define 1, tiz as the standardized return of asset and connect it with each stock

1, tiR and dynamic variance 1, ti :
1,

1,
1,




 

ti

ti
ti

R
z


.

The formula for conditional correlation using covarince of standardized returns to

come true.15 That is 1,
1,1,

1,

1,

1,

1,

1,
1,1, )))(((),( 












  tij

tjti

tij

tj

tj

ti

ti
ttjtit

RR
EzzE 






For bivariate correlated stocks, the stock with the correct correlation matrix is:

15 Christoffersen(2012),S. 159-160
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'2/12/1 )( 

  












 1

1
)(

2,1

2,1'
11 tt zzE

Where the bivariate correlation matrix can also be written as:

So that the matrix squared root
2/1 can be constructed by form:











 2
2,12,1

2/1

1
01




The standard normal variable in the bivariate case will be defined as:

uzz 11  and uu zzz 2
2
2,112,12 1  

Define notation 1z as vector of returns for asset 1 and 2z for asset 2.16 And these

formulas will be used later when building threshold correlation plots.

For asset 1z and 2z , the probability density function in this two dimensions case is

  )))((2)()(
)1(2

1exp(
12

1,
21

2221
2
2

2
22

2
1

2
11

22
21

21 






 












zzzzzz

zzzzzzzzzzf











The parameter  is the correlation between two assets.17

To make the density formula easier define and modeling in the R program, the

function can be given by the following form:

)
)1(2

2
exp(

12
1),(),( 2

21
2
,2

2
,1

22121 



 






zzzz
zzzzf tt , where the bivariate

correlation matrix between two assets is
1

1



  = 21  .18 The correlation 

has been already computed by DCC model.

The n-dimensions multivariate probability density function is:

16 Christoffersen(2012),S. 184
17 Tong(1990), S. 6-7
18 Christoffersen(2012), S. 196
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)
2
1exp(

)2(
1)();( 1'

2/12/ ttntt zzzzf  


  .19

2.1.1.4 Threshold correlation plot for multivariate normal distribution

Now modeling multivariate normal distribution for asset returns. The graph method

threshold correlation is intuitive to show the relationship between asset returns and

normal distribution in the multivariate case. It describes not only the relationship

between different shocks and also the tail shape of multivariate distribution.

Firstly, a correlation between stocks in the bivariate case with probability must be

mentioned. Considering probability 0.5 as a cut-off point and tz ,1 , tz ,2 as vector of

asset standard returns for two companies. And there is a function of asset returns:

ttt rz / .

When the probability smaller than 0.5, the two assets are both lower than there

percentile values. When the probability bigger than 0.5, the two assets are both higher

than there percentile values. Notation )(1 pr and )(2 pr are empirical quantile for

asset 1 and asset 2.

The following form of threshold correlation for assets with probability p can be

written as:













5.0)),()((
5.0)),()((

),,(
2,21,1

2,21,1
,2,1 pprandrprrCorr

pprandrprrCorr
prr

tt

tt
tt

If the two lines are matched well, that means the multivariate normal distribution

conforms with asset returns.

The threshold correlation describes also dependence of asset returns. The observation

stocks could be both negative or both positive.20 Then analyze them with probability.

And combine multivariate normal density function with threshold correlation plot to

19 Christoffersen(2012), S. 197
20 Christoffersen(2012),S. 194-195
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show bivariate normal distribution of asset returns for different values of correlation.

If lines show flexible degrees of tail dependence between two variables in the

threshold correlation from the bivariate normal distribution, or rather, lines can

accurately describe features of data, that means the joint distribution model is fit to

asset returns.

2.1.2 The multivariate student t distribution of asset returns

2.1.2.1 QQ plot of Non-normality and standard t distribution

The Quantile-Quantile(QQ) plot compares empirical quantiles of distributions. It

gives a way to find whether a distribution model fits to the distribution of random

variables.21

At first, QQ plot will be used to show the Non-normality of stock returns. The

diagonal line xy  is the quantiles of normal distribution, if the quantiles function

of stock returns is normally distributed, it will be tended to this diagonal line.22

From the form of stock returns before, we have known that ttPFtPF zR ,,  for rate of

portfolio return. Building tz as standard normal distributed and sort these values.

That is
tPF

tPF
t

R
z

,

,


 .

Then find the probability below than
T

i 5.0 . The value -0.5 is an adjustment for

those random variables. And T is all of the sample objects.

Define standard normal quantiles as function 1
/)5.0(


 Ti . The meaning of Axis is same

as the definition as before. The Axis of quantiles of the normal distribution can be

given by:

21 Beirlant, J.(2004), S3-4; Geogebeur, Y.(2004), S.3-4; Teugles, J.(2004), S. 3-4; Segers J.(2004), S. 3-4;Waal,
D.D.(2004), S. 3-4; Ferro, C.(2004), S. 3-4
22 Christoffersen(2012),S. 123
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   iTiii zYX ,, 1
/)5.0(


 .23

Secondly, combine normally distributed GARCH model and t distributed GARCH

model with QQ plot together to find that QQ plot has smaller deviations from student

t distribution. So that trying to approach multivariate t distribution of asset returns.

2.1.2.2 Threshold correlation plot for multivariate student t distribution

The Student t distribution called also t distribution for short, it used to calculate the

mean of all populations with normal distribution and an unknown value of deviation.

)(
~
dt represent the notation of standard t distribution. The key advantage of t

distribution is that describing features of stock returns better than normal distribution.

The function of t distribution is 2
)1(2

)1(

2

)
2
1(

)(
d

d
t

dd

d

tf













, with 0d . The

parameter d is the number of degrees of freedom and )(z is Euler’s gamma

function.

Then considering standardized t distribution )(
~
dt of the above function. That is

2
)1(2

)
)2(

))2/(/(1(
)2()

2
(

)
2
1(

)(
d

d
ddt

dd

d

tf
















, with z
dd
t


 )2/(

for 2d .

The random term z obtains the value of mean equal to zero and standard deviation

equal to one.24

Using the maximum log-likelihood function to estimate the unknown parameter d：

.))2/()/(1ln()1(
2
1

}2/)2ln(2/)ln()2/(ln())2/)1(({ln());(ln(ln

1

2
,,

1 )(
~













T

t
tPFtPF

T

t
t

dt

dRd

dddTdzfL





23 Christoffersen(2012),S. 124
24 Christoffersen(2012), S. 128
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The variance 2
,tPF has been modeled by GARCH model before, therefore, the

parameter d effects maximum likelihood Lln .25

Notice that multivariate t distribution with the correlation  between those asset

returns, the bivariate t distribution can be written as:

2
)2(

2
21

2
2

2
1

2/1221 )
)1)(2(

21(
)1()2)(2/(

)2/)2((),(











d

d
zzzz

dd
dzzf






In the bivariate case, the probability density function of multivariate t distribution is

2
)2(2,2

1,

21
12

1
1

21 )1(
2

),(












d

ji d
zzzzf


, for all 2d .

Finally, the n-dimensions multivariate t distribution will be defined as:

2
)(1'

2/12/
)

2
1(

))2)((2/(
)2/)((),;(

nd

n d
zz

dd
nddzf















 , with .2d 26

And constructing multivariate t density function with threshold correlation plot to

show bivariate t distribution of asset returns for different values of correlation. If lines

can accurately describe features of data, that means the joint distribution model is fit

to asset returns.

2.1.3 Copulas model for joint distribution of asset returns

2.1.3.1 Theoretical foundation: Sklar’s Theorem

Building the univariate standardized non-normal distribution using ttPFtPF zR ,， ,

that is
tPF

tPF
t

R
z

,

,


 , which contains forecast conditional variance tPF , and univariate

distribution D(0,1) with mean of zero and deviation of one.27

The notation can be written as )1,0(...~ Ddiizt .

25 Christoffersen(2012), S. 129-130
26 Christoffersen(2012), S. 198-199
27 Christoffersen(2012),S. 123
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Therefore, the multivariate non-normal distribution for return of asset or portfolio will

be defined as ),0(~ tt Dz  . The connotation of notation tz in this situation means

vector of varied stocks asset and t as the matrix of time varying correlation.

Multivariate distribution functions are not enough for extreme value and have

shortcomings if the precondition is non-normality.28

So that copula models offer a way to combine individual variables or univariate

distribution into a joint model. The process of modeling copulas in this research is to

make the marginal probability functions form a joint distribution.29 If the notation

)( ii zf is returns of asset i(i=1,2......n), iu is the probability cumulative density

function(CDF) with form )( iii zFu  for marginal distributions of n assets.30

Sklar’s Theorem is the basis of copulas. It offers a connection between marginal

variables and the joint distribution and constructed by ).,...,( 1 nxxC Different

individual models can be together into a joint distribution.

In the bivariate case, there is standard joint distribution function yxF , with two CDFs:

))(),((),(, yFxFCyxF yxyx  .

For multivariate standard returns iz , the copula can be written by:

),...,())(),...,((),...,( 1111 nnnn uuCzFzFCzzF  , with )( 111 zFu 

Sklar’s Theorem for multivariate probability density function will be given by form:














n

i
iin

n

i
ii

n

n
n

n

nn
n

n zfuuczf
uu
uuC

zz
zFzFCzzf

1
1

11

1

1

11
1 )(),...,()(

...
),...,(

...
))(),...,((),...,(

Where n-dimensions marginal distribution for asset returns )(),...,( 11 nn zfzf and the

notation ),...,( 1 nuuc as probability density copula defined.

The log-likelihood function of copula PDF noted as:

28 Christoffersen(2012),S. 193
29 Kole, Erik(2006): Journal of Banking & Finance, in: 31(2007), S. 2407
30 Christoffersen(2012), S. 203
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T

t

t
n

t uucL
1

1 ),...,(lnln

It gives a possibility to modeling joint distribution of different assets, which can use

different univariate distribution and estimating its parameters.31

2.1.3.2 The normal copula of asset returns

Normal copula called also Gaussian copula. The joint distribution from dependence

multivariate standard normal function using normal copula, where * means a

matrix of correlation between different inverse cumulative density functions of

individual normal distribution.

In the bivariate case, the normal copula for two normal inverse cumulative density

functions is:

)))((),((()(),();,( 21
1

11
1

2
1

1
1*

21 ** zFzFuuuuC  


 ）（ , with probability

CDF of returns )( iii zFu  and probability correlation of two asset * .

Notice that )( 11 zF and )( 22 zF are marginal distributions for standard returns of

asset 1 and asset 2.32

And the normal copula of probability density function can be given by the following

form:

)
2

2)()(

)1(2
)()(2)()(exp(

1
1);,(

2
12

1
1

2*
2

1
1

1*2
2

12
1

1

2*
*

21

uu

uuuuuuc





















The function of maximum log-likelihood is:

2
)()(

)1(2
)()(2)()()1ln(

2
),(lnln

2
2

12
1

1

1
2*

2
1

1
1*2

2
12

1
1

2*

1
21

uu

uuuuTuucL
T

t

T

t















  


31 Christoffersen(2012), S. 203-204
32 Christoffersen(2012), S. 205
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In n-dimensions normal copula, the multivariate cumulative density functions with n

asset can be written as:

))(),...,(();,...,( 1
1

1*
1 * nn uuuuC  




The multivariate probability density function is:

))()()(
2
1exp();,...,( 11*'12

1
**

1 uIuuuc nn


  , with an identity matrix





















100

010
001







nI .

Log-likelihood can be used for estimate correlation matrix * , the function is:

 
 






T

t

T

t
tnt

T

t
tnt uIuuucL

1 1

11*'1

1

*
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The correlation matrix of normal copula can be written as:





T

t
tt zzT 1

*'** 1 , where notes *
,tiz as copula return for asset i on day t and defined by

the formula: ))(( ,
1*

, tiiti zFz  .

The key difference between multivariate normal distribution and normal copula is that

the normal copula can be written by non-normal marginal distributions not only

normal marginal distributions. So normal copula is more convenient to calculation

and analysis than normal distribution.

But there is the same disadvantage as normal distribution. The normal copula can not

building multivariate model for asset returns with extreme variables, which have high

correlations of tails.33

To show the shortcoming of normal copula and compare it with the t copula model.

Considering the Kendall Tau method to estimate based parameter and build contour

plots of normal copula and t copula.

33 Christoffersen(2012), S. 206-207
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2.1.3.3 The t copula of asset returns

According to contour plots of these copula models, assume that the t copula model is

better for modeling joint distribution of asset returns.

Now considering the student t copula. The t copula model is more flexible for

modeling multivariate distribution with extreme variables than the normal copula.

For two asset returns cumulative density functions, the t copula can be given by the

following form with parameter d for degrees of freedom:

));(),;((),;,( 2
1

1
1

),(
*

21 * dutduttduuC
d






The notation
),( *d

t states multivariate t distribution with parameter d and correlation

* . And 1t is the inverse of student t distribution function.

For multivariate asset returns, the n-dimensions cumulative density function of t

copula can be written as:
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  , with a matrix of correlation * .

The probability density function in the bivariate case is:
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And the multivariate PDF of t copula obtain the formula:
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For estimating parameter d and correlation matrix of t copula, the maximum

log-likelihood form is:
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Here the copula shocks of t copula will be defined as:
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And the form of the correlation matrix is similar to the formula of correlation matrix

for normal copula.34

Finally, plot the scatter plot of sample observations and simulated data under normal

marginals distribution functions and student t copula to verify whether the t copula

model fits to multivariate asset returns. If most of the simulated observations are fit to

sample data i.e. these points coincide with each other, which means t copula a good

approach to constructing joint distribution of asset returns.

2.2 Evaluation criteria of approaches

2.2.1 The univariate models of individual asset

The univariate model of each asset is basis before considering multivariate model of

asset returns. There are two steps of univariate models.

Forecasting tomorrow’s variance of asset returns is the first part of this model. Define

daily asset log returns and assume daily returns normal distributed. Then estimating

dynamic variance by squared return. To catch features of each asset better, the

GARCH volatility model will be used. This part shows the effect of daily asset returns

to dynamic volatility.35

The second part of univariate models is modeling the non-normality of portfolio

returns.

Recall the formula of portfolio: 



n

i
tititPF SNV

1
,,, . Given log returns of the portfolio

as: )./ln( 1,,,  tPFtPFtPF VVR And the assumption of conditional volatility under

non-normal distribution can be written as ttPFtPF zR ,,  , with )1,0(~ Dzt .36

34 Christoffersen(2012), S. 208-209
35 Christoffersen(2012), S. 67-68
36 Christoffersen(2012), S. 123; Christoffersen(2012), S. 143
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Constructing theoretical quantiles against sample quantiles QQ plot and compare the

univariate normal distribution and the t distribution of asset returns using the GARCH

model together.

At last, find the better approach of those distributions to fit portfolio data.

2.2.2 Monte Carlo simulation

The Monte Carlo simulation method describes distributions by simulated random

samples. This process can be implied by drawing lots of artificial random samples and

observing features of the distribution model.37

If we generate pseudo random of innovation term tiz , . That can be written as:

1,iz


, with i=1,2,3,...,MC

So that the formula of daily asset returns and period (like K days) returns will be

implied by:

1,11, 







 titti zR  and 











K

k
ktiktti RR

1
,,1, , where i=1,2,3,...,MC

The multivariate normal distribution and t distribution of asset returns with different

correlations can be constructed by Monte Carlo random numbers. The process for

multivariate Monte Carlo is: At first, given multivariate random 1,i
uz


. And then using

matrix square 2/1 to correlate those random data with the DCC model. Finally,

assessing the threshold correlation from multivariate distributions models.

Notice that Monte Carlo simulation allows only for standardized distributed returns.

The random number of samples is flexible.38 To increase the accuracy of results, I

will choose as much simulated data as possible.

37 Christopher Z.(1997), S. 2-3
38 Christopher Z.(1997), S. 177
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3 Data

3.1 Data collection

In this paper, the daily closing price of Alibaba Group and Amazon from January 01,

2015 to January 01, 2020(five years of data) are initial sample data. These two

companies were both listed in American. To make sure samples with the same

monetary units is a prerequisite for analysis. Those data resources are directly given

by Yahoo Finance in R. For example, the first closing price for Alibaba Group on

January 02, 2015 is 103.60 and the price for Amazon is 308.52 at the same time.

And then is data cleaning of daily closed price for these two sample companies

because there are much missing values. e.g. there are no closed prices on January 03,

2015 and January 04, 2015. The data cleaning process is necessary for the calculation

of asset returns later.

So daily asset returns are observation data, which used to analyze with distribution

functions and copula models together. The value of stock returns can be estimated by

closing prices.

3.2 Data processing

Firstly, to get the sample data from Alibaba Group in five years and estimate daily log

returns using the packet “quantmod” in R. In order to use closing prices from January

01, 2015 to January 01, 2020 as empirical data, the packet “zoo” and it’s extended

implementation packet “xts” must be used.

In R, the packet “zoo” offers time series and is the basis of stock analysis. The packet

“xts” enriches the functions of time series data processing.

So that it is easy to obtain daily open price, high price, low price, closing price,

volume, and adjusted value of Alibaba Group. The 4th column of the data is the

closing price and will be chosen to calculate daily log returns in these five years via a

function of log returns in R.
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Then drawing the histogram of daily log returns. And add a line to the histogram,

which describes normal distribution with the same mean and standard deviation as log

returns in figure 1.

For squared returns and moving average variance of asset, the daily log returns will be

calculated using the R library function.

And for moving average variance, the following packages needed to load: dplyr, stats

and base. The packet “dplyr” is mainly used to data cleaning, including data select,

filter, arrange, mutate and summarize, etc. According to the form of tomorrow’s

variance: 


 
m

tt R
m 1

2
1

2
1

1


 with 10 observations. Setting the R library function

“filter” with data of log returns to show the result. The time series is from 2015 to

2020 and the frequency of the data will be built as 12 months. Finally, the plot of

time-varying variance can be constructed.

Contrast with moving average variance is the GARCH volatility model. The GARCH

variance model for log returns can be achieved by package “fGarch” in R. The

log-likelihood of unknown parameters will be shown in console called coefficient(s).

And using normal distribution and student t distribution to construct the GARCH(1,1)

model.

Then constructing line chart of dynamic volatility from fitted GARCH objects. Time

will be same as moving average variance: From 2015 to 2020 with frequency 12

months.

R functions “qqnorm” and “qqline” are used for the normality test of Alibaba’s

returns.

Now considering a combination of two methods: GARCH volatility model and QQ

plot. It offers an intuitive way to compare goodness-of-fit of standard normal

distribution and t distribution.

Combine Alibaba’s GARCH shocks against normal distribution at first. And compare

it with the Alibaba’s GARCH shocks against student t distribution. Number 13 means

the graph type will be chosen as QQ plot. Finally, get QQ plots of normally
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distributed GARCH shocks and t distributed GARCH shocks in figure 7.

Fitting the DCC-GARCH model to time series of stock returns. The chart of the

dynamic conditional correlation between Alibaba Group and Amazon will be

completed.

The first step is to get closing prices from Amazon and calculate its daily log returns

from January 01, 2015 to January 01, 2020. It is same as the process before that

obtains data and estimates returns from Alibaba Group. To make data of two

companies into a data frame. The name of the first column is daily returns i.e.

Alibaba’s returns and the second column is daily returns 1 i.e. Amazon’s returns.

Next, loading package “rmgarch”, package “rugarch” and the default package

“parallel”. The packet “rmgarch” handles multivariate data in the GARCH model.

Assume that the bivariate data of stock returns are normally distributed. Then specify

“mean.model” as simplest armaOrder(0,0). The “variance.model” set up a simple

GARCH(1,1) in “sGARCH” model. Insert those models together. And connect the

DCC model with the GARCH model under multivariate normal distribution in R.

Given conditional correlations between asset returns from two companies with

random number of observation 10. The conditional correlation plot will be received.

Figure 9 shows the threshold correlation for Alibaba Group versus Amazon and

threshold correlation from normal distribution with correlation matching sample data.

For the threshold correlation plots, the package “ggplot2” and “tidyr” are necessary.

The data frame of bivariate log returns from Alibaba and Amazon is a foundation.

Combine the returns of these two companies into a data frame. Recall function of

assets, quantile of assets, and probability according to the corresponding form:
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Constructing correlation function, which contains the above conditions. Then setting

function on random samples of normal distribution. Define repeat value equal to zero.

The function of random variable 1 will be written as “data$r1” and the variable 2 will

be constructed same as in the DCC model:
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)1(*2$*1$ 2  rdatardata

Quantile’s scalar states from 0.15 to 0.90 with equally increments 0.01. The threshold

correlation of normal distribution and the threshold correlation with matching log

returns will be defined. Given 30000 random numbers of normal distribution using

the Monte Carlo simulation method.

Notice that if make percentile, the correlation between two asset returns, and

correlation with normal distribution into a data frame, there are five columns of data

will be represented. But only data on columns one, three, and five are useful. After

that, i will build plots of threshold correlations with “ggplot” in R. So that these two

lines can appear on the same graph.

In order to analyze the threshold correlation from multivariate standard normal

distribution. Repeating zero and random simulations of normal distribution into the

data frame.

Given value of random correlation  as -0.3, 0, 0.3, 0.6 and 0.9. Defining normal

distribution function from Alibaba’s returns and Amazon’s returns with different

values of correlations. Combine all of vectors of percentile and correlations. Selecting

data on columns one, two, four, six, eight, and ten, which including percentile and

corresponding correlations. Then drawing threshold correlation from multivariate

normal distribution with “ggplot” in R.

Up to now, constructing threshold correlation implied by multivariate t distribution

with different values of correlation. The process is similar to the threshold correlation

from bivariate normal distribution. Repeating zero and random simulations of t

distribution into the data frame. Given random correlations as -0.25, 0, 0.25, 0.75 and

0.9. Define the multivariate t distribution function of asset returns same as bivariate

normal distribution because d is a scalar and it has no effect on sample data. The

Monte Carlo random numbers are same as before i.e. 30000. Assign parameter d as

15 here is flexible. The line chart of threshold correlation against percentile by

multivariate t distribution will be built.
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Then constructing contour plot for normal copula and student t copula. The package

“VineCopula” and “copula” are for copula models and acts on parameter estimation,

simulation, model selecting, visualization, etc. Creating parameter of bivariate copula

model with Kendall Tau method. Here I will define the same tau as 0.7 for bivariate

normal copula and t copula. So that the two contours are comparable. Then

determining the family of the objects. Number 1 means Gaussian(normal) copula and

number 2 is the student t copula. For t copula, a second parameter  can compete as

4. At last, building contour plots for those two copula models in R.

Finally, connect the copula model to sample data.

The first step is modeling marginal distributions. For the sake of simplicity, assume

that marginal distributions of asset returns conform to normal distribution. Define

parameters of marginal distributions i.e. “mean(ret)” and “sd(ret)” for Alibaba’s

returns and “mean(retamazon)” and “sd(retamazon)” for Amazon’s returns. Apply the

copula model in R and setting the copula model as t copula in the multivariate case.

Then generate simulated observations with random samples 4000. Here shows again

Monte Carlo simulation. At last, plot the scatter plot of sample observations and

simulated data under normal marginals distribution functions and student t copula

model. Add legends to make the scatterplot more clearly.

4 Empirical results

Before approaching the joint distribution model of stock returns. Recall the

assumption for stock returns is: 111   ttt zR  , with )1,0(~1 Nzt

At first, using a histogram of daily Alibaba log returns and line of normal distribution

to show the mismatch. The following green histograms are daily log returns for

Alibaba Group from January 01, 2015 to January 01, 2020.

It is clear to indicate that histograms in green are higher than the red curve, which

describes the normal distribution with the same mean and standard deviation as stock



24

returns. And there is a fatter tail of log stock returns than the normal distribution. So

the stock returns do not correspond to the density of normal distribution function.

This phenomenon gives us the motivation to continue research because figure 1

overturns the general assumption: stock returns are usually assumed to follow the

normality distribution. In other words stock returns are non-normal distributed.39

Figure 1: Histogram of daily Alibaba log returns and normal distribution

Creating a forecasting tomorrow’s variance model using squared return with the

simple average of m objects, by laying out the form:
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 .

The value of moving average variance dependence on tomorrow’s squared returns. So

the first step is to show time-varying squared returns. The following graph contains a

line of daily squared returns for Alibaba Group from Jan 2015 to Jan 2020 in green.

The obvious kurtosis is around the end of 2016 to 2017. From January 2015 to the end

of 2019, the tend of most squared returns waves around 0.005.

39 Christopher Z.(1997), S. 121
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Figure 2: Squared returns for Alibaba from January 2015 to January 2020

Figure 3 shows a line of moving average variance with ten random objects. The

highest line segment is also around 2016 to 2017 like the trend of squared returns. But

the broken line can not accurately describe tomorrow’s variance well. High squared

returns will be accompanied by a high future variance. But the trend of predicted

variance will fall sharply after the highest phase i.e. the red line segment which

dropped at the end of 2016 in the diagram. This phenomenon is unrealistic.

Moving average variance shows also the non-normality of portfolio returns. The tails

of distribution by dynamic variance are fat.40 Here let us combined with the formula

to see: Higher return brings relevant higher tomorrow’s variance by 1/m times of

which the opposite is also right. So the determination of m will affect the value of

1
2
t and it will further affect 1t . A smooth trend of 1t because of a large

number of m observations.41 There is a strict correlation between m and 1t but

hard to determine the value of m in practice.

40 Christoffersen(2012), S. 143
41 Christoffersen(2012), S. 69
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Figure 3: Moving average variance on past 10 objects

So a more accurate tool for estimation of dynamic variance is needed. And it is

necessary for the analysis of distribution for returns.

The following figure 4 shows GARCH(1,1) forecast variance under normal

distribution from January 2015 to January 2020. According to results of the

GARCH(1,1) volatility model(i.e. log-likelihood shows values of parameter mu,

omega, alpha1 and beta1). Now note tr as series of log returns. The actual 2
t

depends on beta equal to 0.5523 and alpha equal to 0.1075. The independence

parameter omega is 0.0037. So GARCH variance model can be written by:

tt ar  017.0 , )1,0(~ Nat

2
1

2
1

2 5523.01075.00037.0   ttt a 

Figure 5 is t distributed GARCH(1,1) volatility model for Alibaba’s log returns.The

actual 2
t depends on parameter alpha and beta, which are both equal to (1.0e-08).

Omega is the constant parameter of the GARCH model and equal to 0.0011. The

following formula is given by results in console(in the Appendix):

tt ar  001.0 , )(~
~
dtat

2
1

2
1

2 )080.1()080.1(0011.0   ttt eae 

Through graphs, we can see the GARCH volatility model is more accurate to
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forecasting tomorrow’s variance and especially at the extreme value of stock returns.

And t distributed GARCH(1,1) volatility model describes dynamic variance is more

detailed than normal distributed GARCH(1,1). That also means, the student t

distribution can capture the change of variance due to change of stock returns better

than normal distribution. The GARCH variance model proved also Non-normality

distribution of stock returns because the distribution function of returns depends on all

past variance.42

Figure 4: Normal distributed GARCH(1,1) volatility model for Alibaba’s returns

Figure 5: Student t distributed GARCH(1,1) volatility model for Alibaba’s returns

42 Christoffersen(2012),S. 121
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Figure 6 is empirical quantiles of stock returns against normal distribution. The left

and right tails are obviously diverged from the straight line. This QQ plot of returns

shows the feature of fat tails is intuitive. In the univariate models, the daily Alibaba

Group stock returns do not conform to normal distribution, the result is same as figure

1(Histogram of daily Alibaba log returns and normal distribution). So that the QQ plot

confirms stock return distributed under non-normality.

Figure 6: QQ plot of daily returns for Alibaba Group from January 2015 to January

2020

Use QQ plot and GARCH model together to show goodness-of-fit for asset returns.

Figure 7 is a comparison for QQ plot of daily stock returns with normal distributed

GARCH model and t distributed GARCH model. The left pattern is GARCH stock

returns against normal distribution. The right one is GARCH stock returns against

student t distribution.

It is clear to find that the right plot seems to fit the straight line better than the left

graph, even though there is still some extreme value deviating from the straight line.

There are fat tails on left and right sides of normally distributed GARCH shocks.

Using the result obtained here: The student t distribution of returns is more consistent

with sample data, so it is a better alternative approach than normal distribution in the

univariate case.
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Furthermore, QQ plot for GARCH shocks against skewed t distribution can also be

built. The plot will be shown in Appendix because the result is not significantly

different from the t distribution.

Figure 7: QQ plots of daily stock returns with normal distribution and student t

distribution using GARCH(1,1)

Then plot the dynamic conditional correlation for Alibaba Group daily log returns and

Amazon log returns. It is clear to see that those two stock returns have positive

correlation property. And the trend of conditional correlations fluctuates over time.

Overall the trend of the two companies, their conditional correlation is growing. In

2019, the correlation reached a higher point.
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Figure 8: Conditional correlations for Alibaba Group index and Amazon index with

DCC model and GARCH model.

The red line is the threshold correlation with daily log returns from Alibaba Group

and Amazon. And the blue lines describe threshold correlation from normal

distribution with correlation matching those asset returns.

These two lines are obviously not matched with each other, even though there exist

points where two lines intersect. The threshold correlation from two asset returns is

higher than the threshold correlation by normal distribution with corresponding

correlation as those returns overall. The blue line shows that the normal distribution

between Alibaba’s returns and Amazon’s returns is asymmetric. And the threshold

correlation will be higher when there are large positive returns on the left side of

figure 9. The large positive asset returns have much higher correlation than large

negative returns.

The result against the assumption once again. The multivariate threshold correlation

from Alibaba index and Amazon index is non-normal distributed.
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Figure 9: Threshold correlation plot for Alibaba Group versus Amazon and threshold

correlation from normal distribution with correlation matching sample data.

The following figure 10 is a threshold correlation from bivariate normal distribution

with different values of correlation  versus percentile. These lines proved again that

threshold correlation from multivariate normal distribution is asymmetric.

For large correlations, the threshold correlation will be changed accordingly. For some

particular correlation value, for example, when  equal to zero, the threshold

correlation can be zero too. So the multivariate normal distribution model is not fit to

large asset returns with extreme probability value, which has a large threshold

correlation.43

Figure 10: Threshold correlation from bivariate normal distribution

Now considering threshold correlation of multivariate t distribution. It is clear to see

43 Christoffersen(2012),S. 197
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more flexible degrees of tail dependence using bivariate t distribution of asset returns.

Comparing the broken line in yellow on Figure 10 and 11, when correlation  equal

to zero, the threshold correlation by multivariate t distribution is not going to zero.

The multivariate t distribution describes more accurate than normal distribution for

asset returns, which have large threshold correlations.44

Figure 11: Threshold correlation implied by bivariate t distribution

The multivariate normal distribution can not describe threshold correlation of daily

asset returns well. The multivariate t distribution can be used to describe the larger

threshold correlation but hard to calculate because conditions of parameter d is

restrict.45 Therefore, considering copula models, which can combine all univariate

functions into a multivariate distribution model and simulate the requisite parameter

easier.

When these two copula models using the same tau as the correlation parameter, the

flagrant contrast is obvious. But the same character is the probability density of

normal copula and t copula are both symmetric.

The outer contour has a lower value of probability with extreme variables for the

combination of assets. But the shape of contour probability for normal copula is

elliptical, which means this copula is not conformed to large(whatever positive or

negative) sample data. However, consider the bottom-left and top-right corner of the

44 Christoffersen(2012),S. 203
45 Christoffersen(2012), S. 203
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contour plot for t copula. The probability contour plot for t copula looks almost like a

symmetrical quadrilateral. Extreme variables will be considered better in t copula

model.46

Figure 12: Contour probability plots for normal and student t copula

Finally, apply sample data i.e. Alibaba’s and Amazon’s asset returns to the copula

model. From the above probability contour for normal copula and t copula, we can get

a conclusion is that t copula describes sample data is more accurately. So that

constructing scatter points plot for sample data and simulated objects under normal

marginals and t copula model.

The points in black are sample data. And red points describe simulated observations,

which conform to t copula with normal marginals function. Almost all of the

simulated observations are fit to sample data, even though there are regardless of

some extreme value. Some black points are outside with no red points.

Therefore, the t copula model gives the way to link marginal distributions into a joint

distribution model for asset returns. And it describes distributions of asset returns

well.

46 Christoffersen(2012), S. 210
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Figure 13: Scatter chart for Alibaba’s returns and Amazon’s returns under student t

copula

5 Conclusion

Now return to the original questions at the beginning of this paper. How to form the

proper joint distribution of asset returns? There are three approaches to constructing

the joint distribution of asset returns. The best of those approaches is student t copula

model. And what are the criteria for a good approach to constructing joint distribution

of asset returns? The univariate model and Monte Carlo simulation are the most

important criteria for evaluation.

The multivariate normal distribution is convenient for computation because linear

combination of normal variables is also normally distributed in the multivariate case,

which means calculation of modeling is simple47 But this model can not accurately

describe features of asset returns. It gives an inflexible way to explain the shape of

tails. And asset returns do not conform to normal distribution in fact. If constructing

joint distribution of returns data using multivariate normal distribution model, it will

create exorbitant price and underestimates the probability of extreme returns.48 On

the other hand, it increases risk factors for investors or for risk managers.

47 Christoffersen(2012),S. 198
48 Christoffersen(2012),S. 193
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The multivariate t distribution of asset returns is flexible for large threshold

correlations. But this model is hard to calculate because of the restrict condition of

parameter d .49

The copulas can combine all those details from kind of distributions and used to link

individual marginal distributions and returns to form a proper multivariate distribution

model. The normal copula is better than multivariate normal distribution, but it

doesn’t have enough dependence for different tails of distributions.50 The t copula

model allows large threshold correlation with extreme variables. Or rather, the most

important advantage of the t copula model is the inclusiveness. That means t copula

allows many factors(e.g. value of mean, deviations, kurtosis and skewness for a

density function, etc) together to obtain a joint distribution for asset returns. This

approach based on the univariate model of individual assets and linked them together

to produce a multivariate risk model of asset returns.

The univariate model is used to measure individual portfolio return and forecast

time-varying variance. Besides, the non-normality between the distribution of each

asset can be captured. Then constructing multivariate distribution of asset returns

based on the univariate model and simulation method i.e. Monte Carlo.51

The t copula for the joint distribution of asset returns shows also good-fitness to

integrated risk management.

49 Christoffersen(2012),S. 203
50 Christoffersen(2012),S. 207
51 Christoffersen(2012),S. 17
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